深度学习之神经网络框架搭建及模型优化
神经网络框架搭建及模型优化
目录
- 神经网络框架搭建及模型优化
- 1 数据及配置
- 1.1 配置
- 1.2 数据
- 1.3 函数导入
- 1.4 数据函数
- 1.5 数据打包
- 2 神经网络框架搭建
- 2.1 框架确认
- 2.2 函数搭建
- 2.3 框架上传
- 3 模型优化
- 3.1 函数理解
- 3.2 训练模型和测试模型代码
- 4 最终代码测试
- 4.1 SGD优化算法
- 4.2 Adam优化算法
- 4.3 多次迭代
1 数据及配置
1.1 配置
需要安装PyTorch,下载安装torch、torchvision、torchaudio,GPU需下载cuda版本,CPU可直接下载
cuda版本较大,最后通过控制面板pip install +存储地址离线下载,
CPU版本需再下载安装VC_redist.x64.exe,可下载上述三个后运行,通过报错网址直接下载安装
1.2 数据
使用的是 torchvision.datasets.MNIST的手写数据,包括特征数据和结果类别
1.3 函数导入
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
1.4 数据函数
train_data = datasets.MNIST(root='data', # 数据集存储的根目录train=True, # 加载训练集download=True, # 如果数据集不存在,自动下载transform=ToTensor() # 将图像转换为张量
)
- root 指定数据集存储的根目录。如果数据集不存在,会自动下载到这个目录。
- train 决定加载训练集还是测试集。True 表示加载训练集,False 表示加载测试集。
- download 如果数据集不在 root 指定的目录中,是否自动下载数据集。True 表示自动下载。
- transform 对加载的数据进行预处理或转换。通常用于将数据转换为模型所需的格式,如将图像转换为张量。
1.5 数据打包
train_dataloader = DataLoader(train_data, batch_size=64)
- train_data, 打包数据
- batch_size=64,打包个数
代码展示:
import torch
print(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
运行结果:
调试查看:
2 神经网络框架搭建
2.1 框架确认
在搭建神经网络框架前,需先确认建立怎样的框架,目前并没有理论的指导,凭经验建立框架如下:
输入层:输入的图像数据(28*28)个神经元。
中间层1:全连接层,128个神经元,
中间层2:全连接层,256个神经元,
输出层:全连接层,10个神经元,对应10个类别。
需注意,中间层需使用激励函数激活,对累加数进行非线性的映射,以及forward前向传播过程的函数名不可更改,
2.2 函数搭建
- nn.Flatten() , 将输入展平为一维向量
- nn.Linear(28*28, 128) ,全连接层,需注意每个连接层的输入输出需前后对应
- torch.sigmoid(x),对中间层的输出应用Sigmoid激活函数
# 定义一个神经网络类,继承自 nn.Module
class NeuralNetwork(nn.Module):def __init__(self):super().__init__() # 调用父类 nn.Module 的构造函数# 定义网络层self.flatten = nn.Flatten() # 将输入展平为一维向量,适用于将图像数据(如28x28)展平为784维self.hidden1 = nn.Linear(28*28, 128) # 第一个全连接层,输入维度为784(28*28),输出维度为128self.hidden2 = nn.Linear(128, 256) # 第二个全连接层,输入维度为128,输出维度为256self.out = nn.Linear(256, 10) # 输出层,输入维度为256,输出维度为10(对应10个类别)# 定义前向传播过程def forward(self, x):x = self.flatten(x) # 将输入数据展平x = self.hidden1(x) # 通过第一个全连接层x = torch.sigmoid(x) # 对第一个全连接层的输出应用Sigmoid激活函数x = self.hidden2(x) # 通过第二个全连接层x = torch.sigmoid(x) # 对第二个全连接层的输出应用Sigmoid激活函数x = self.out(x) # 通过输出层return x # 返回最终的输出
2.3 框架上传
- device = ‘cuda’ if torch.cuda.is_available() else ‘mps’ if torch.backends.mps.is_available() else ‘cpu’,确认设备, 检查是否有可用的GPU设备,如果有则使用GPU,否则使用CPU
- model = NeuralNetwork().to(device),框架上传到GPU/CPU
模型输出展示:
3 模型优化
3.1 函数理解
- optimizer = torch.optim.Adam(model.parameters(), lr=0.001),定义优化器:
- Adam()使用Adam优化算法,也可为SGD等优化算法
- model.parameters()为优化模型的参数,
- lr为学习率/梯度下降步长为0.001
- loss_fn = nn.CrossEntropyLoss(pre,y),定义损失函数,使用交叉熵损失函数,适用于分类任务
- pre,预测结果
- y,真实结果
- loss_fn.item(),当前损失值
- model.train() ,将模型设置为训练模式,模型参数是可变的
- x, y = x.to(device), y.to(device),将数据移动到指定设备(GPU或CPU)
- 反向传播:清零梯度,计算梯度,更新模型参数
- optimizer.zero_grad() ,清零梯度缓存
loss.backward(), 计算梯度
optimizer.step() , 更新模型参数
- optimizer.zero_grad() ,清零梯度缓存
- model.eval(),将模型设置为评估模式,模型参数是不可变
- with torch.no_grad(),禁用梯度计算,在测试过程中不需要计算梯度
3.2 训练模型和测试模型代码
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f} [number: {batch_size_num}]')batch_size_num +=1train(train_dataloader,model,loss_fn,optimizer)def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
4 最终代码测试
4.1 SGD优化算法
torch.optim.SGD(model.parameters(),lr=0.01)
代码展示:
import torchprint(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.hidden1 = nn.Linear(28*28,128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256,10)def forward(self,x):x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x)x = self.hidden2(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device)
#
print(model)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f} [number: {batch_size_num}]')batch_size_num +=1def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
#train(train_dataloader,model,loss_fn,optimizer)
test(test_dataloader,model,loss_fn)
运行结果:
4.2 Adam优化算法
自适应算法,torch.optim.Adam(model.parameters(),lr=0.01)
运行结果:
4.3 多次迭代
代码展示:
import torchprint(torch.__version__)
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensortrain_data = datasets.MNIST(root = 'data',train = True,download = True,transform = ToTensor()
)
test_data = datasets.MNIST(root = 'data',train = False,download = True,transform = ToTensor()
)
print(len(train_data))
print(len(test_data))
from matplotlib import pyplot as plt
figure = plt.figure()
for i in range(9):img,label = train_data[i+59000]figure.add_subplot(3,3,i+1)plt.title(label)plt.axis('off')plt.imshow(img.squeeze(),cmap='gray')a = img.squeeze()
plt.show()train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader= DataLoader(test_data, batch_size=64)
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'Using {device} device')
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.hidden1 = nn.Linear(28*28,128)self.hidden2 = nn.Linear(128, 256)self.out = nn.Linear(256,10)def forward(self,x):x = self.flatten(x)x = self.hidden1(x)x = torch.sigmoid(x)x = self.hidden2(x)x = torch.sigmoid(x)x = self.out(x)return x
model = NeuralNetwork().to(device)
#
print(model)
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
loss_fn = nn.CrossEntropyLoss()
def train(dataloader,model,loss_fn,optimizer):model.train()batch_size_num = 1for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)loss = loss_fn(pred,y)optimizer.zero_grad()loss.backward()optimizer.step()loss_value = loss.item()if batch_size_num %100 ==0:print(f'loss: {loss_value:>7f} [number: {batch_size_num}]')batch_size_num +=1def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss,correct = 0,0with torch.no_grad():for x,y in dataloader:x,y = x.to(device),y.to(device)pred = model.forward(x)test_loss += loss_fn(pred,y).item()correct +=(pred.argmax(1) == y).type(torch.float).sum().item()a = (pred.argmax(1)==y)b = (pred.argmax(1)==y).type(torch.float)test_loss /=num_batchescorrect /= sizeprint(f'test result: \n Accuracy: {(100*correct)}%, Avg loss:{test_loss}')
#train(train_dataloader,model,loss_fn,optimizer)
test(test_dataloader,model,loss_fn)
#
e = 30
for i in range(e):print(f'e: {i+1}\n------------------')train(train_dataloader, model, loss_fn, optimizer)
print('done')test(test_dataloader, model, loss_fn)
运行结果:
相关文章:

深度学习之神经网络框架搭建及模型优化
神经网络框架搭建及模型优化 目录 神经网络框架搭建及模型优化1 数据及配置1.1 配置1.2 数据1.3 函数导入1.4 数据函数1.5 数据打包 2 神经网络框架搭建2.1 框架确认2.2 函数搭建2.3 框架上传 3 模型优化3.1 函数理解3.2 训练模型和测试模型代码 4 最终代码测试4.1 SGD优化算法…...

采用分步式无线控制架构实现水池液位自动化管理
以下是基于巨控GRM241Q-4D4I4QHE模块的完整技术方案,采用分步式无线控制架构实现水池液位自动化管理: 一、系统架构设计 硬件部署 山顶单元 GRM241Q模块(带4G功能) 液位计(4-20mA) 功能:实时采…...

OpenEuler学习笔记(二十三):在OpenEuler上部署开源MES系统
在OpenEuler上部署小企业开源MES(制造执行系统,Manufacturing Execution System)是一个非常有价值的项目,可以帮助企业实现生产过程的数字化管理。以下是基于开源MES系统(如 Odoo MES 或 OpenMES)的部署步骤…...

SpringSecurity:授权服务器与客户端应用(入门案例)
文章目录 一、需求概述二、基本授权登录功能实现1、授权服务器开发2、客户端开发3、功能测试 三、自定义授权服务器登录页1、授权服务器开发2、功能测试 四、自定义授权服务器授权页1、授权服务器开发2、功能测试 五、客户端信息保存数据库1、授权服务器开发2、功能测试 一、需…...
没用的文章又➕1
次次登陆GitHub都让我抓心挠肝,用了热度最高的法子也不抵事儿。谁说github上全是大神了,也要有我这样的小菜鸟。下面是我的失败记录… 查询目标网站的DNS 在whois上输入目标网站github.com,在查询结果当中选取任意一个DNS将地址和名称添加在…...

BiGRU双向门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)
代码地址:BiGRU双向门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据) BiGRU双向门控循环单元多变量多步预测,光伏功率预测 一、引言 1.1、研究背景和意义 随着全球对可再生能源需求的不断增长,光伏…...

谷歌浏览器多开指南:如何完成独立IP隔离?
对于跨境电商来说,在进行社交媒体营销、广告投放等业务活动时,往往需要同时登录多个账号来提高运营效率和提升营销效果。然而,如果这些账号共享相同的 IP 地址,很容易被平台检测为关联账号,进而触发安全验证甚至封禁。…...

Django开发入门 – 3.用Django创建一个Web项目
Django开发入门 – 3.用Django创建一个Web项目 Build A Web Based Project With Django By JacksonML 本文简要介绍如何利用最新版Python 3.13.2来搭建Django环境,以及创建第一个Django Web应用项目,并能够运行Django Web服务器。 创建该Django项目需…...

【Java】多线程和高并发编程(三):锁(下)深入ReentrantReadWriteLock
文章目录 4、深入ReentrantReadWriteLock4.1 为什么要出现读写锁4.2 读写锁的实现原理4.3 写锁分析4.3.1 写锁加锁流程概述4.3.2 写锁加锁源码分析4.3.3 写锁释放锁流程概述&释放锁源码 4.4 读锁分析4.4.1 读锁加锁流程概述4.4.1.1 基础读锁流程4.4.1.2 读锁重入流程4.4.1.…...
讲解ES6中的变量和对象的解构赋值
在 ES6 中,解构赋值是一种非常方便的语法,它使得从数组或对象中提取值变得更加简洁和直观。解构赋值支持变量赋值,可以通过单独提取数组或对象的元素来赋值给变量。 下面我将分别讲解 数组解构 和 对象解构 的基本用法和一些高级特性。 1. …...

DeepSeek Coder + IDEA 辅助开发工具
开发者工具 我之前用的是Codegeex4模型,现在写一款DeepSeek Coder 本地模型 DeepSeek为什么火,我在网上看到一个段子下棋DeepSeek用兵法赢了ChatGpt,而没有用技术赢,这就是AI的思维推理,深入理解孙子兵法,…...
云计算——AWS Solutions Architect – Associate(saa)4.安全组和NACL
安全组一充当虚拟防火墙对于关联实例,在实例级别控制入站和出站流量。 网络访问控制列表(NACL)一充当防火墙关联子网,在子网级别控制入站和出站流量。 在专有网络中,安全组和网络ACL(NACL)一起帮助构建分层网络防御。 安全组在实例级别操作…...
动量+均线组合策略关键点
动量均线组合策略关键点: 趋势确认: MA系统判断主趋势方向动量指标判断趋势强度 入场条件: 价格站上重要均线(如20日线)动量指标向上并保持高位短期均线上穿长期均线 出场条件: 价格跌破均线系统动量指标见顶回落短期均线下…...

Blazor-<select>
今天我们来说说<select>标签的用法,我们还是从一个示例代码开始 page "/demoPage" rendermode InteractiveAuto inject ILogger<InjectPage> logger; <h3>demoPage</h3> <select multiple>foreach (var item in list){<…...

Synchronized使用
文章目录 synchronized使用基本概念使用方法实现原理锁的粒度并发编程注意事项与Lock锁对比比较线程安全性与性能 synchronized使用 当涉及到多线程编程时,保证数据的正确性和一致性是至关重要的。而synchronized关键字是Java语言中最基本的同步机制之一࿰…...
OpenStack四种创建虚拟机的方式
实例(Instances)是在云内部运行的虚拟机。您可以从以下来源启动实例: 一、上传到镜像服务的镜像(Image) 使用已上传到镜像服务的镜像来启动实例。 二、复制到持久化卷的镜像(Volume) 使用已…...
Expo运行模拟器失败错误解决(xcrun simctl )
根据你的描述,问题主要涉及两个方面:xcrun simctl 错误和 Expo 依赖版本不兼容。以下是针对这两个问题的解决方案: 解决 xcrun simctl 错误 错误代码 72 通常表明 simctl 工具未正确配置或路径未正确设置。以下是解决步骤: 确保 …...
Docker从入门到精通- 容器化技术全解析
第一章:Docker 入门 一、什么是 Docker? Docker 就像一个超级厉害的 “打包神器”。它能帮咱们把应用程序和它运行所需要的东东都整整齐齐地打包到一起,形成一个独立的小盒子,这个小盒子在 Docker 里叫容器。以前呢,…...

开启对话式智能分析新纪元——Wyn商业智能 BI 携手Deepseek 驱动数据分析变革
2月18号,Wyn 商业智能 V8.0Update1 版本将重磅推出对话式智能分析,集成Deepseek R1大模型,通过AI技术的深度融合,致力于打造"会思考的BI系统",让数据价值触手可及,助力企业实现从数据洞察到决策执…...

RabbitMQ 消息顺序性保证
方式一:Consumer设置exclusive 注意条件 作用于basic.consume不支持quorum queue 当同时有A、B两个消费者调用basic.consume方法消费,并将exclusive设置为true时,第二个消费者会抛出异常: com.rabbitmq.client.AlreadyClosedEx…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...