当前位置: 首页 > news >正文

深度学习每周学习总结R6(RNN实现阿尔茨海默病诊断)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客R8中的内容,为了便于自己整理总结起名为R6
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

目录

      • 0. 总结
      • 1. 数据集介绍
      • 2. 数据预处理
      • 3. 模型构建
      • 4. 初始化模型及优化器
      • 5. 训练函数
      • 6. 测试函数
      • 7. 模型评估
      • 8. 模型保存及加载
      • 9. 使用训练好的模型进行预测

0. 总结

数据导入及处理部分:在 PyTorch 中,我们通常先将 NumPy 数组转换为 torch.Tensor,再封装到 TensorDataset 或自定义的 Dataset 里,然后用 DataLoader 按批次加载。

模型构建部分:RNN

设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的,一般是默认放在反向传播之前。

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。

结果可视化

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), ‘model.pth’) 保存模型的参数,使用 model.load_state_dict(torch.load(‘model.pth’)) 加载参数。

需要改进优化的地方:确保模型和数据的一致性,都存到GPU或者CPU;注意numclasses不要直接用默认的1000,需要根据实际数据集改进;实例化模型也要注意numclasses这个参数;此外注意测试模型需要用(3,224,224)3表示通道数,这和tensorflow定义的顺序是不用的(224,224,3),做代码转换时需要注意。

关于优化:

目前的尝试: 可以采用采用了L2正则化及dropout

1. 数据集介绍

数据信息:

  • PatientID:分配给每个患者(4751 到 6900)的唯一标识符。

  • Age: 患者的年龄从 60 岁到 90 岁不等。

  • Gender:患者的性别,其中 0 代表男性,1 代表女性。

  • Ethnicity:患者的种族,编码如下:

0: 高加索人

1:非裔美国人

2:亚洲

3:其他

  • EducationLevel:患者的教育水平,编码如下:

:无

1:高中

2:学士学位

3:更高

  • BMI:患者的体重指数,范围从 15 到 40。

  • Smoking:吸烟状态,其中 0 表示否,1 表示是。

  • AlcoholConsumption (酒精消费量):每周酒精消费量(以 0 到 20 为单位),范围从 0 到 20。

  • PhysicalActivity:每周身体活动(以小时为单位),范围从 0 到 10。

  • DietQuality:饮食质量评分,范围从 0 到 10。

  • SleepQuality:睡眠质量分数,范围从 4 到 10。

  • FamilyHistoryAlzheimers::阿尔茨海默病家族史,其中 0 表示否,1 表示是。

  • CardiovascularDisease:存在心血管疾病,其中 0 表示否,1 表示是。

  • Diabetes:存在糖尿病,其中 0 表示否,1 表示是。

  • Depression:存在抑郁,其中 0 表示否,1 表示是。

  • HeadInjury:头部受伤史,其中 0 表示否,1 表示是。

  • Hypertension:存在高血压,其中 0 表示否,1 表示是。

  • SystolicBP:收缩压,范围为 90 至 180 mmHg。

  • DiastolicBP: 舒张压,范围为 60 至 120 mmHg。

  • CholesterolTotal:总胆固醇水平,范围为 150 至 300 mg/dL。

  • CholesterolLDL:低密度脂蛋白胆固醇水平,范围为 50 至 200 mg/dL。

  • CholesterolHDL:高密度脂蛋白胆固醇水平,范围为 20 至 100 mg/dL。

  • CholesterolTriglycerides:甘油三酯水平,范围为 50 至 400 mg/dL。

  • Diagnosis:阿尔茨海默病的诊断状态,其中 0 表示否,1 表示是。

2. 数据预处理

import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
# 数据导入
df = pd.read_csv("./data/alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
df
AgeGenderEthnicityEducationLevelBMISmokingAlcoholConsumptionPhysicalActivityDietQualitySleepQuality...FunctionalAssessmentMemoryComplaintsBehavioralProblemsADLConfusionDisorientationPersonalityChangesDifficultyCompletingTasksForgetfulnessDiagnosis
07300222.927749013.2972186.3271121.3472149.025679...6.518877001.725883000100
18900026.82768104.5425247.6198850.5187677.151293...7.118696002.592424000010
27303117.795882019.5550857.8449881.8263359.673574...5.895077007.119548010100
37410133.800817112.2092668.4280017.4356048.392554...8.965106016.481226000000
48900020.716974018.4543566.3104610.7954985.597238...6.045039000.014691001100
..................................................................
21446100139.12175701.5611264.0499646.5553067.535540...0.238667004.492838100001
21457500217.857903018.7672611.3606672.9046628.555256...8.687480019.204952000001
21467700115.47647904.5946709.8860028.1200255.769464...1.972137005.036334000001
21477813115.29991108.6745056.3542821.2634278.322874...5.173891003.785399000011
21487200233.28973807.8907036.5709937.9414049.878711...6.307543018.327563010010

2149 rows × 33 columns

# 标准化
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,:-1]
y = df.iloc[:,-1]# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X = sc.fit_transform(X)
# 划分数据集
X = torch.tensor(np.array(X),dtype = torch.float32)
y = torch.tensor(np.array(y),dtype = torch.int64)X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.1,random_state = 1)
X_train.shape,y_train.shape
(torch.Size([1934, 32]), torch.Size([1934]))
# 构建数据加载器
from torch.utils.data import TensorDataset,DataLoadertrain_dl = DataLoader(TensorDataset(X_train,y_train),batch_size = 64,shuffle = False)
test_dl = DataLoader(TensorDataset(X_test,y_test),batch_size = 64,shuffle = False)

3. 模型构建

class model_rnn(nn.Module):def __init__(self):super(model_rnn, self).__init__()self.rnn0 = nn.RNN(input_size=32, hidden_size=200, num_layers=1, batch_first=True)self.fc0   = nn.Linear(200, 50)self.fc1   = nn.Linear(50, 2)def forward(self, x):out, hidden1 = self.rnn0(x) out    = self.fc0(out) out    = self.fc1(out) return out   model = model_rnn().to(device)
model
model_rnn((rnn0): RNN(32, 200, batch_first=True)(fc0): Linear(in_features=200, out_features=50, bias=True)(fc1): Linear(in_features=50, out_features=2, bias=True)
)
model(torch.rand(30,32).to(device)).shape
torch.Size([30, 2])

4. 初始化模型及优化器

model = model_rnn().to(device)
print(model)loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
weight_decay = 1e-4 # 尝试加入权重衰减;一般来说,较小的值(如1e-5到1e-4)就可以起到一定的正则化作用。
# weight_decay = 1e-3
learn_rate = 1e-3   # 学习率
# learn_rate = 3e-4   # 学习率
lambda1 = lambda epoch:(0.92**(epoch//2))optimizer = torch.optim.Adam(model.parameters(),lr = learn_rate, weight_decay = 1e-4)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1) # 选定调整方法
epochs     = 50
model_rnn((rnn0): RNN(32, 200, batch_first=True)(fc0): Linear(in_features=200, out_features=50, bias=True)(fc1): Linear(in_features=50, out_features=2, bias=True)
)

5. 训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

6. 测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)# 计算losstarget_pred = model(X)loss        = loss_fn(target_pred, y)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == y).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss
import copytrain_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0.0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)# 更新学习率scheduler.step() # 更新学习率——调用官方动态学习率时使用model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print('Done. Best test acc: ', best_acc)
Epoch: 1, Train_acc:71.8%, Train_loss:0.544, Test_acc:79.1%, Test_loss:0.431, Lr:1.00E-03
Epoch: 2, Train_acc:82.8%, Train_loss:0.397, Test_acc:80.0%, Test_loss:0.392, Lr:9.20E-04
Epoch: 3, Train_acc:84.6%, Train_loss:0.362, Test_acc:77.7%, Test_loss:0.400, Lr:9.20E-04
Epoch: 4, Train_acc:85.8%, Train_loss:0.348, Test_acc:77.7%, Test_loss:0.409, Lr:8.46E-04
Epoch: 5, Train_acc:86.3%, Train_loss:0.335, Test_acc:79.5%, Test_loss:0.420, Lr:8.46E-04
Epoch: 6, Train_acc:86.9%, Train_loss:0.324, Test_acc:80.9%, Test_loss:0.431, Lr:7.79E-04
Epoch: 7, Train_acc:87.8%, Train_loss:0.310, Test_acc:80.0%, Test_loss:0.464, Lr:7.79E-04
Epoch: 8, Train_acc:87.9%, Train_loss:0.301, Test_acc:78.1%, Test_loss:0.494, Lr:7.16E-04
Epoch: 9, Train_acc:88.9%, Train_loss:0.286, Test_acc:76.3%, Test_loss:0.536, Lr:7.16E-04
Epoch:10, Train_acc:88.8%, Train_loss:0.283, Test_acc:78.6%, Test_loss:0.536, Lr:6.59E-04
Epoch:11, Train_acc:90.3%, Train_loss:0.268, Test_acc:78.6%, Test_loss:0.541, Lr:6.59E-04
Epoch:12, Train_acc:90.8%, Train_loss:0.256, Test_acc:78.1%, Test_loss:0.566, Lr:6.06E-04
Epoch:13, Train_acc:91.5%, Train_loss:0.238, Test_acc:77.7%, Test_loss:0.622, Lr:6.06E-04
Epoch:14, Train_acc:92.1%, Train_loss:0.227, Test_acc:78.6%, Test_loss:0.641, Lr:5.58E-04
Epoch:15, Train_acc:92.0%, Train_loss:0.220, Test_acc:78.1%, Test_loss:0.659, Lr:5.58E-04
Epoch:16, Train_acc:92.4%, Train_loss:0.204, Test_acc:75.3%, Test_loss:0.716, Lr:5.13E-04
Epoch:17, Train_acc:93.4%, Train_loss:0.181, Test_acc:74.0%, Test_loss:0.815, Lr:5.13E-04
Epoch:18, Train_acc:94.2%, Train_loss:0.165, Test_acc:73.5%, Test_loss:0.891, Lr:4.72E-04
Epoch:19, Train_acc:94.6%, Train_loss:0.145, Test_acc:70.7%, Test_loss:0.975, Lr:4.72E-04
Epoch:20, Train_acc:95.2%, Train_loss:0.147, Test_acc:71.6%, Test_loss:1.088, Lr:4.34E-04
Epoch:21, Train_acc:96.1%, Train_loss:0.121, Test_acc:74.4%, Test_loss:1.075, Lr:4.34E-04
Epoch:22, Train_acc:97.1%, Train_loss:0.101, Test_acc:71.2%, Test_loss:1.114, Lr:4.00E-04
Epoch:23, Train_acc:97.3%, Train_loss:0.087, Test_acc:72.6%, Test_loss:1.214, Lr:4.00E-04
Epoch:24, Train_acc:98.0%, Train_loss:0.070, Test_acc:73.0%, Test_loss:1.246, Lr:3.68E-04
Epoch:25, Train_acc:98.9%, Train_loss:0.056, Test_acc:73.0%, Test_loss:1.352, Lr:3.68E-04
Epoch:26, Train_acc:99.0%, Train_loss:0.047, Test_acc:73.5%, Test_loss:1.370, Lr:3.38E-04
Epoch:27, Train_acc:99.3%, Train_loss:0.037, Test_acc:71.6%, Test_loss:1.401, Lr:3.38E-04
Epoch:28, Train_acc:99.5%, Train_loss:0.032, Test_acc:73.0%, Test_loss:1.535, Lr:3.11E-04
Epoch:29, Train_acc:99.6%, Train_loss:0.025, Test_acc:73.0%, Test_loss:1.533, Lr:3.11E-04
Epoch:30, Train_acc:99.7%, Train_loss:0.021, Test_acc:72.6%, Test_loss:1.596, Lr:2.86E-04
Epoch:31, Train_acc:99.7%, Train_loss:0.016, Test_acc:70.7%, Test_loss:1.698, Lr:2.86E-04
Epoch:32, Train_acc:99.8%, Train_loss:0.013, Test_acc:70.7%, Test_loss:1.744, Lr:2.63E-04
Epoch:33, Train_acc:99.8%, Train_loss:0.012, Test_acc:70.2%, Test_loss:1.792, Lr:2.63E-04
Epoch:34, Train_acc:99.8%, Train_loss:0.011, Test_acc:70.7%, Test_loss:1.836, Lr:2.42E-04
Epoch:35, Train_acc:99.8%, Train_loss:0.010, Test_acc:69.8%, Test_loss:1.875, Lr:2.42E-04
Epoch:36, Train_acc:99.8%, Train_loss:0.009, Test_acc:69.8%, Test_loss:1.914, Lr:2.23E-04
Epoch:37, Train_acc:99.8%, Train_loss:0.009, Test_acc:68.8%, Test_loss:1.949, Lr:2.23E-04
Epoch:38, Train_acc:99.8%, Train_loss:0.008, Test_acc:68.8%, Test_loss:1.985, Lr:2.05E-04
Epoch:39, Train_acc:99.8%, Train_loss:0.008, Test_acc:68.4%, Test_loss:2.017, Lr:2.05E-04
Epoch:40, Train_acc:99.8%, Train_loss:0.007, Test_acc:68.4%, Test_loss:2.050, Lr:1.89E-04
Epoch:41, Train_acc:99.8%, Train_loss:0.007, Test_acc:68.4%, Test_loss:2.080, Lr:1.89E-04
Epoch:42, Train_acc:99.8%, Train_loss:0.006, Test_acc:68.4%, Test_loss:2.111, Lr:1.74E-04
Epoch:43, Train_acc:99.8%, Train_loss:0.006, Test_acc:69.3%, Test_loss:2.139, Lr:1.74E-04
Epoch:44, Train_acc:99.8%, Train_loss:0.005, Test_acc:69.3%, Test_loss:2.168, Lr:1.60E-04
Epoch:45, Train_acc:99.8%, Train_loss:0.005, Test_acc:69.3%, Test_loss:2.194, Lr:1.60E-04
Epoch:46, Train_acc:99.8%, Train_loss:0.005, Test_acc:68.8%, Test_loss:2.221, Lr:1.47E-04
Epoch:47, Train_acc:99.8%, Train_loss:0.005, Test_acc:68.8%, Test_loss:2.245, Lr:1.47E-04
Epoch:48, Train_acc:99.8%, Train_loss:0.004, Test_acc:68.8%, Test_loss:2.270, Lr:1.35E-04
Epoch:49, Train_acc:99.9%, Train_loss:0.004, Test_acc:68.8%, Test_loss:2.293, Lr:1.35E-04
Epoch:50, Train_acc:99.9%, Train_loss:0.004, Test_acc:68.8%, Test_loss:2.316, Lr:1.24E-04
Done. Best test acc:  0.8093023255813954

7. 模型评估

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

# 混淆矩阵
print("==============输入数据Shape为==============")
print("X_test.shape:",X_test.shape)
print("y_test.shape:",y_test.shape)pred = model(X_test.to(device)).argmax(1).cpu().numpy()print("\n==============输出数据Shape为==============")
print("pred.shape:",pred.shape)
==============输入数据Shape为==============
X_test.shape: torch.Size([215, 32])
y_test.shape: torch.Size([215])==============输出数据Shape为==============
pred.shape: (215,)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay# 计算混淆矩阵
cm = confusion_matrix(y_test, pred)plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")# 修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label", fontsize=10)
plt.ylabel("True Label", fontsize=10)# 显示图
plt.tight_layout()  # 调整布局防止重叠
plt.show()

在这里插入图片描述

8. 模型保存及加载

# 自定义模型保存
# 状态字典保存
torch.save(model.state_dict(),'./模型参数/R7_rnn_model_state_dict.pth') # 仅保存状态字典# 定义模型用来加载参数
best_model = model_rnn().to(device)best_model.load_state_dict(torch.load('./模型参数/R7_rnn_model_state_dict.pth')) # 加载状态字典到模型
<All keys matched successfully>

9. 使用训练好的模型进行预测

test_X = X_test[0].reshape(1, -1) # X_test[0]即我们的输入数据pred = best_model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:",pred)
print("=="*20)
print("0:未患病")
print("1:已患病")
模型预测结果为: 0
========================================
0:未患病
1:已患病

相关文章:

深度学习每周学习总结R6(RNN实现阿尔茨海默病诊断)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客R8中的内容&#xff0c;为了便于自己整理总结起名为R6&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 0. 总结1. 数据集介绍2. 数据预处理3. 模型构建4. 初始化模型及优化器5. 训练函…...

Node.js 多模态图像描述服务 调用siliconflow:现代 JavaScript 实践

Node.js 多模态图像描述服务&#xff1a;现代 JavaScript 实践 项目背景 本项目使用 Node.js 和 TypeScript 实现一个高性能的图像描述微服务&#xff0c;展示 JavaScript 在多模态 AI 应用中的强大能力。 技术栈 Node.jsTypeScriptExpress.jsOpenAI APIdotenvRxJS (可选&a…...

机器学习数学基础:21.特征值与特征向量

一、引言 在现代科学与工程的众多领域中&#xff0c;线性代数扮演着举足轻重的角色。其中&#xff0c;特征值、特征向量以及相似对角化的概念和方法&#xff0c;不仅是线性代数理论体系的核心部分&#xff0c;更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式…...

【目标检测json2txt】label从COCO格式json文件转YOLO格式txt文件

目录 🍀🍀1.COCO格式json文件 🌷🌷2.YOLO格式txt文件 💖💖3.xml2json代码(python) 🐸🐸4.输入输出展示 🙋🙋4.1输入json 🍂🍂4.2输出txt 整理不易,欢迎一键三连!!! 送你们一条美丽的--分割线-- 🍀🍀1.COCO格式json文件 COCO数…...

强化学习之 PPO 算法:原理、实现与案例深度剖析

目录 一、引言二、PPO 算法原理2.1 策略梯度2.2 PPO 核心思想 三、PPO 算法公式推导3.1 重要性采样3.2 优势函数估计 四、PPO 算法代码实现&#xff08;以 Python 和 PyTorch 为例&#xff09;五、PPO 算法案例应用5.1 机器人控制5.2 自动驾驶 六、总结 一、引言 强化学习作为…...

vue-点击生成动态值,动态渲染回显输入框

1.前言 动态点击生成数值&#xff0c;回显输入框&#xff0c;并绑定。 2.实现 <template><div style"display:flex;align-items: center;flex-direction:row"><a-input:key"inputKey"v-model"uploadData[peo.field]"placehold…...

高性能 :OpenAI Triton Open-source GPU programming Language LINUX 环境配置

目录 配置triton环境cudabuild-essential带有pip的python环境直接安装pipanaconda 安装 triton 环境pip install tritonpip install torch 运行test示例vector-add.pylaunch.json 配置triton环境 cuda wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_…...

TCP 端口号为何位于首部前四个字节?协议设计的智慧与启示

知乎的一个问题很有意思&#xff1a;“为什么在TCP首部中要把TCP的端口号放入最开始的四个字节&#xff1f;” 这种问题很适合我这种搞历史的人&#xff0c;大年初一我给出了一个简短的解释&#xff0c;但仔细探究这个问题&#xff0c;我们将会获得 TCP/IP 被定义的过程。 文…...

HTML之JavaScript函数声明

HTML之JavaScript函数声明 1. function 函数名(){}2. var 函数名 function(){}<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1…...

R 数组:高效数据处理的基础

R 数组&#xff1a;高效数据处理的基础 引言 在数据科学和统计分析领域&#xff0c;R 语言以其强大的数据处理和分析能力而备受推崇。R 数组是 R 语言中用于存储和操作数据的基本数据结构。本文将详细介绍 R 数组的创建、操作和优化&#xff0c;帮助读者掌握 R 数组的使用技巧…...

git服务器搭建,gitea服务搭建,使用systemclt管理服务

文章目录 页面展示使用二进制文件安装git服务下载选择架构使用wget下载安装 验证 GPG 签名服务器设置准备环境创建systemctl文件 备份与恢复备份命令 (dump)恢复命令 (restore) 页面展示 使用二进制文件安装git服务 所有打包的二进制程序均包含 SQLite&#xff0c;MySQL 和 Po…...

Pdf手册阅读(1)--数字签名篇

原文阅读摘要 PDF支持的数字签名&#xff0c; 不仅仅是公私钥签名&#xff0c;还可以是指纹、手写、虹膜等生物识别签名。PDF签名的计算方式&#xff0c;可以基于字节范围进行计算&#xff0c;也可以基于Pdf 对象&#xff08;pdf object&#xff09;进行计算。 PDF文件可能包…...

嵌入式WebRTC压缩至670K,目标将so动态库压缩至500K,.a静态库还可以更小

最近把EasyRTC的效果发布出去给各大IPC厂商体验了一下&#xff0c;直接就用EasyRTC与各个厂商的负责人进行的通话&#xff0c;在通话中&#xff0c;用户就反馈效果确实不错&#xff01; 这两天有用户要在海思hi3516cv610上使用EasyRTC&#xff0c;工具链是&#xff1a;gcc-2024…...

百度高德地图坐标转换

百度地图和高德地图的侧重点不太一样。同样一个地名&#xff0c;在百度地图网站上搜索到的地点可能是商业网点&#xff0c;在高德地图网站上搜索到的地点可能是自然行政地点。 高德地图api 在高德地图中&#xff0c;搜索地名&#xff0c;如“乱石头川”&#xff0c;该地名会出…...

ES 索引结构

ES 既不像 MySQL 这样有严格的 Schema&#xff0c;也不像 MongoDB 那样完全无 Schema&#xff0c;而是介于两者之间。 1️⃣ ES 的 Schema 模式 ES 默认是 Schema-less&#xff08;无模式&#xff09; 的&#xff0c;允许动态添加字段。 但 ES 也支持 Schema&#xff08;映射 …...

HPM_SDK应用本地化——基于6750evkmini

文章目录 前言一、准备工作1、下载官方的SDK2、解压SDK 二、实操1、新建目标工程文件夹2、回到SDK中将相关文件复制1、Borad文件夹2、hello_world文件夹 三、实验现象总结 前言 为什么要对sdk进行应用本地化&#xff1f;在嵌入式开发中我们一般将官方提供的SDK作为参考&#x…...

【deepseek-r1本地部署】

首先需要安装ollama,之前已经安装过了&#xff0c;这里不展示细节 在cmd中输入官网安装命令&#xff1a;ollama run deepseek-r1:32b&#xff0c;开始下载 出现success后&#xff0c;下载完成 接下来就可以使用了&#xff0c;不过是用cmd来运行使用 可以安装UI可视化界面&a…...

查询语句来提取 detail 字段中包含 xxx 的 URL 里的 commodity/ 后面的数字串

您可以使用以下 SQL 查询语句来提取 detail 字段中包含 oss.kxlist.com 的 URL 里的 commodity/ 后面的数字串&#xff1a; <p><img style"max-width:100%;" src"https://oss.kxlist.com//8a989a0c55e4a7900155e7fd7971000b/commodity/20170925/20170…...

堆排序

目录 堆排序&#xff08;不稳定&#xff09;&#xff1a; 代码实现&#xff1a; 思路分析&#xff1a; 总结&#xff1a; 堆排序&#xff08;不稳定&#xff09;&#xff1a; 如果想要一段数据从小到大进行排序&#xff0c;则要先建立大根堆&#xff0c;因为这样每次堆顶上都能…...

【MySQL】我在广州学Mysql 系列—— 数据备份与还原

ℹ️大家好&#xff0c;我是练小杰&#xff0c;今天周一&#xff0c;过两天就是元宵节了&#xff0c;今年元宵节各位又要怎么过呢&#xff01;&#xff01; 本文主要对Mysql数据库中的数据备份与还原内容进行讨论&#xff01;&#xff01; 回顾&#xff1a;&#x1f449;【MySQ…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...