当前位置: 首页 > news >正文

“云计算一哥”一口气发布6个大模型、3nm芯片!多模态还要搞Any-to-Any

金磊 发自 拉斯维加斯
量子位 | 公众号 QbitAI

就在刚刚,云计算一哥亚马逊云科技,在大模型这件事儿上搞了波大的——

亚马逊CEO Andy Jassy亲自站台re:Invent24,发布自家新款AI多模态系列大模型,名曰Amazon Nova

而且是一口气涵盖文本对话图片生成视频生成,甚至直接吐露一个小目标:

将来我们不仅要Speech to Speech,更要Any-to-Any

0e60cccdf9a7e12968216b4327249b50.png

整体而言,Amazon Nova系列中的所有模型,均以功能和尺寸来划分。

先来看下新版尖端基础大模型的“文本对话篇”,一共包含四个杯型:

  • Amazon Nova Micro:仅限文本对话,主打一个低价格和低延迟;

  • Amazon Nova Lite:低成本的多模态大模型,处理图像、视频和文本输入的速度极快。

  • Amazon Nova Pro:高性能的多模态大模型,精度、速度和成本最佳“配方”,可处理广泛的任务。

  • Amazon Nova Premier:亚马逊最强多模态大模型,可处理复杂的推理任务,也可用于蒸馏客户定制化的模型。

在现场,Andy也晒出了Amazon Nova在CRAG、BFCL、VisualWebBench和Mind2Web等Benchmarks上取得的分数。

从成绩中不难看出,其在检索增强生成(RAG)、函数调用和智能体应用方面具有较好的性能。

a64ce37fc34c481de7ab29361a844bfc.png

据悉,前三者已经上架亚马逊云科技的“模型工厂”Amazon Bedrock,而Premier版本则将于2025年第一季度推出。

目前也有一些实测已经流出,例如给Amazon Nova Pro一句Prompt:

Write a summary of this doc in 100 words. Then, build a decision tree.
写一篇100字的摘要。然后,构建一个决策树。

啪的一下,结果就出来了:

881148c6be3bc1748037023739b638b2.png

再如让Amazon Nova Pro理解下面这个合并在一起的视频:

它给出的答案是:

The video begins with a view of a rocky shore on the ocean, and then transitions to a close-up of a large seashell resting on a sandy beach.
视频一开始是海洋上的岩石海岸,然后过渡到一个大贝壳躺在沙滩上的特写。

10c54b84fb49c6ddb57425aac918ec27.gif

接下来,就是“非文本生成篇”,一共包括两款。

Amazon Nova Canvas,主打的是图像生成,用官方的话来说,是达到了“State-of-the-art”(最先进)的水平:

19c968297c0a96f79c7f9943601215a2.png

至于视频生成模型,名叫Amazon Nova Reel,给定一张图片和一句话,即可让它动起来:

632c7e1df61951448ea7f48d7d613694.gif

而接下来Andy的一番话,直接让现场不淡定了。

正如我们刚才提到的,Andy已经放出了话,Amazon Nova即将呈现出来的态势是万物皆可生成

ad0116a881a952eaefdefc58e2921165.png

值得细细品味的一点是,亚马逊云科技在生成式AI时代中,先前发布自研大模型并不算最吸睛的那一批。

虽然此前也发布过Amazon Titan大模型,但模态上也仅限于文本,更多的精力还是聚焦在了像Amazon Bedrock、Amazon Q这样的平台和应用。

而这次,亚马逊云科技却一反常态,以厚积薄发之势把主流模态全面覆盖,甚至一句“Any-to-Any”彰显其雄心。

为何会如此?

纵观整场发布会,透过亚马逊云科技CEO Matt Garman的全程介绍,或许可以把答案总结为——

实力是一直有的,只是现在客户有需求了。

5ecb11ca7e72a2550cfb002b22a4422b.pngMatt Garman首次以CEO身份参加re:Invent

这又该如何理解?我们继续往下看。

算力再升级,价格很美丽

先看实力。

作为云计算一哥,算力是亚马逊云科技的看家本领之一。

与传统云服务厂商不同,其自主研发并优化的专用芯片和数据中心,包括Graviton和Nitro等专有服务器主机,为实时计算提供支持。

而这一次,从芯片到服务器,基础设施上一系列的更新动作,可以分为三大板块来看——

计算(Compute)存储(Storage)数据库(Database)

55b1f236d0864dab88facc1c46a038ce.png

在计算层面上,亚马逊云科技先是宣布Amazon EC2 Trn2实例正式可用

EC2 Trn2实例采用了第二代Trainium 芯片(Trainium2),与上一代Trn1实例相比,性能提升显著。具体来说:

  • 训练速度提高4倍:这一性能提升能有效减少模型训练所需时间,加快企业应用落地;

  • 内存带宽提高4倍:更强的数据传输能力可以满足复杂模型对实时数据处理的高要求;

  • 内存容量提高3倍:为高参数量模型的运行提供了足够的计算资源。

此外,Trn2实例在性价比上比当前基于GPU的EC2 P5e和P5en实例高出30-40%

每个Trn2实例包含16个Trainium2芯片,192 vCPUs,2 TiB的内存,以及3.2 Tbps的Elastic Fabric Adapter (EFA) v3 网络带宽,这比上一代降低了高达 35% 的延迟。

e51043263dcc6586369a14fb17dd873a.png

针对更高性能需求,亚马逊云科技同时推出了Trn2 UltraServer

这是一种全新的超大规模计算产品,每台UltraServer包含64个Trainium2芯片,并通过高带宽、低延迟的 NeuronLink互连实现了卓越的性能。

这使得Trn2 UltraServer成为训练超大规模基础模型(如生成式 AI、LLM 等)的理想选择。

NeuronLink是亚马逊云科技专有的网络互连技术,它能够将多台Trainium服务器组合成一个逻辑上的单一服务器,连接带宽可达2TB/s的带宽,而延迟仅为1微秒。

它的设计特别适合分布式深度学习任务,在网络通信上的优化有助于显著缩短训练时间,提升资源利用率。

用官方的话来说就是:

这正是训练万亿级参数的大型人工智能模型所需要的超级计算平台,非常强大。

b9d86fc1245ab2a9d21dfc824cc8de64.png

在现场,苹果也来为亚马逊站台,机器学习和人工智能高级总监Benoit Dupin表示:

苹果将使用亚马逊云科技的Trainium2芯片。

74aa8f129f79c8eba2a7c41f6046e54f.png

除此之外,在芯片层面上,亚马逊云科技发布了AWS Trainium3芯片预览版,预计于2025年正式推出。

据悉,Trainium3将采用3纳米工艺制造,提供两倍于Trainium2的计算能力,并提升40%的能效。

0e92b73f3fe5486f02e210a35160f4b5.png

在计算(Compute)之后,便是存储(Storage)上的更新。

我们都知道,在数据分析和大数据领域,处理和查询大规模数据集的能力至关重要。

而传统的数据查询方法在处理海量数据时,常常导致性能瓶颈和管理复杂性,影响了企业的数据驱动决策能力。

为此,亚马逊云科技专门推出了Amazon S3 Tables

ed48c7e10d959dcefd13388f15d21bee.png

Amazon S3 Tables提供了一种新的存储方式,专为表格数据设计,支持使用Amazon Athena、Amazon EMR 和 Apache Spark等流行的查询引擎进行轻松查询。

S3的表存储桶是它的第三种存储桶类型,与现有的通用存储桶和目录存储桶并列;可以将表存储桶视为一个分析仓库,用于存储具有不同模式的Iceberg表格。

与自管理的表格存储相比,S3 Tables可以实现高达3倍的查询性能提升和10倍的每秒事务处理能力,同时提供全托管服务的操作效率。

除此之外,元数据(Metadata)也变得越发重要,例如电话里面有很多照片,正是因为通过元数据储存数据,现在可以实现用自然语言很快找到这张照片。

基于这样的需求,亚马逊云科技推出了Amazon S3 Metadata的预览版

3e6a2fcb0dc6604c4bc48993d47c6dba.png

Amazon S3 Metadata提供了一种自动化、易于查询的元数据管理方式,这些元数据几乎实时更新,帮助用户整理、识别和使用S3数据进行业务分析、实时推理应用等。

它支持对象元数据,包括系统定义的详细信息(如大小和对象来源)以及自定义元数据,允许用户使用标签为对象添加产品SKU、交易ID或内容评级等信息。

而这些元数据同样也存储在S3 Tables之中。

41c0708af8b283a8c261aa0eb2d26a2a.png

在计算、存储之后,便是基础设施的第三大板块——数据库(Database)

有意思的一点是,Matt在现场分享了一张“OR”还是“AND”的图,表示企业在选择数据库时普遍遇到的艰难抉择——跨区域一致、高可用性、低延迟,往往只能3选2。

cdcb118a7933aa66fdc9ab6025226630.png

而亚马逊云科技此次给出的答卷是,都可以有

这就是新型无服务器分布式数据库Amazon Aurora DSQL,旨在解决传统数据库在扩展性和性能方面的挑战。

b70fe8aa1dcab5d75d348036e1c0eb7d.png

Aurora DSQL结合了传统关系数据库的强一致性和NoSQL数据库的分布式扩展能力,提供了以下几个关键优势:

  • 跨区域强一致性和低延迟:采用了全新的架构,使其能够在多个地理区域中同时运行,而保持强一致性。

  • 无限扩展:能够处理数TB到数PB级的数据集,适用于任何规模的企业。

  • 超高可用性:提供99.999%的可用性,这对于许多需要高可用性和无缝运行的企业级应用至关重要。

  • 性能优越:其跨区域的读写操作比Spanner快了四倍。

5093e5154547175ae64aaf1fa8f008af.png

以上便是亚马逊云科技此次在基础设施上的发力了。

新的积木——推理

如果说把基础设施的三大板块视为三块积木,那么接下来,亚马逊云科技在模型层和应用层方面添加了第四块积木——推理(Inference)

推理是生成式AI工作流的核心,它指的是将已经训练好的模型应用到新数据上,进行预测、生成或推断。

Matt在会上强调:

推理在AI模型的应用中变得尤为重要,尤其是在处理像大型语言模型等复杂模型时,推理要求极高的计算能力和低延迟响应。

而Amazon Bedrock作为亚马逊云科技在模型层的一项AI平台服务,先是与我们上述的基础设施在推理上保持了同步。

换言之,Inferentia和Trainium芯片提供的推理的硬件优化,用户可以通过Amazon Bedrock便捷访问这些资源。

而至于Amazon Bedrock本身,这次也迎来多项能力的升级。

首先就是模型蒸馏(Model Distillation),能够自动化创建针对特定用例的蒸馏模型。

d7d62331f0e12f6bc5182574e7b8e2dc.png

主要是通过从大型基础模型(教师模型)生成响应,并使用这些响应来微调较小的基础模型(学生模型),从而实现知识转移,提高小模型的精确度,同时降低延迟和成本。

2beee968015ccba3708c6cf69255f27a.png

其次是多智能体协作(multi-agent collaboration)。

在需要多个智能体处理复杂任务的场景中,管理这些智能体变得具有挑战性,尤其是随着任务复杂性的增加。

使用开源解决方案的开发者可能会发现自己需要手动实现智能体编排、会话处理、内存管理等复杂操作。

这也正是亚马逊云科技在Amazon Bedrock上推出多智能体协作的出发点。具体特点如下:

  • 快速设置:无需复杂编码,几分钟内创建、部署和管理协同工作的AI智能体。

  • 可组合性:将现有智能体作为子智能体集成到更大的智能体系统中,使它们能够无缝协作以应对复杂的工作流程。

  • 高效的智能体间通信:监督智能体可以使用一致的接口与子智能体进行交互,支持并行通信以更高效地完成任务。

  • 优化的协作模式:在监督模式和监督加路由模式之间选择。在路由模式下,监督智能体将直接将简单请求路由到相关的子智能体,绕过完整的编排。

54b93c979a80d7d96e1b565505c75c6c.png

最后,也是更为重要的一点,便是防止大型语言模型幻觉导致的事实错误的功能——自动推理检查(Automated Reasoning checks),这是Amazon Bedrock Guardrails中新增的一项功能。

6847b5df944db6158061a83e9b014f81.png

这种新的防护措施,旨在通过数学验证来确保LLMs生成的响应的准确性,并防止幻觉导致的事实错误。

自动推理检查使用基于数学和逻辑的算法验证和推理过程来验证模型生成的信息,确保输出与已知事实一致,而不是基于虚构或不一致的数据。

与机器学习(ML)不同,自动推理提供了关于系统行为的数学保证。

据悉,亚马逊云科技已经在存储、网络、虚拟化、身份和密码学等关键服务领域使用自动推理,例如,自动推理用于正式验证密码实现的正确性,提高性能和开发速度。

8292def271d67b3e3585eae6af322867.png

在性能方面,Bedrock还推出了低延迟优化推理,由此,用户可以在使用最先进的大模型基础上,还享受卓越的推理性能。

值得一提的是,Llama 405B和Llama 70B低延迟优化版本,在亚马逊云科技上展现出超越其他云提供商的出色表现。

3f0c0f46365195404c726f1b809a2598.png

还有应用层和其它更新

针对开发者和企业,亚马逊云科技在应用层上的代表作便是Amazon Q了。

针对越来越多的企业寻求从本地数据中心迁移到云的痛点,亚马逊云科技在Amazon Q Developer上推出了多项新功能。

其中较为引人注目的就是Transformation for Windows .NET Applications,这项功能使得企业能够更快速地将.NET应用程序迁移到AWS,同时还能够显著降低迁移成本。

5cae7327737913cdfd7bbddee4961fe2.png

Amazon Q为.NET应用程序提供了自动化迁移工具,能够识别应用程序中可能存在的不兼容问题,生成迁移计划,并且自动调整源代码,确保平滑过渡到云端。这种自动化迁移大幅提高了工作效率,减少了人为干预。

通过将应用程序从Windows迁移到Linux,企业能够节省高昂的Windows许可费用,降低TCO(总拥有成本)。

Matt指出,使用Amazon Q的企业能够节省多达40%的许可成本。

而且迁移速度比传统手动迁移快了四倍,大大减少了系统迁移的停机时间和风险。

除了Windows应用的迁移,亚马逊云科技还推出了Amazon Q Developer Transformation for VMware Workloads功能,专为运行在VMware上的企业工作负载设计。

通过这一工具,亚马逊云科技可以帮助企业将本地的VMware环境迁移到云平台。

be00a8cb39af7e0ed33d716c32d7d445.png

应用层之外,还有诸如将AI和分析做结合的产品——Amazon SageMaker。

它作为一个可以帮企业加速AI应用的开发、训练和部署的数据科学平台,今天也正式步入了“下一代”。

新一代SageMaker的核心是SageMaker Unified Studio

这是一个单一的数据和AI开发环境,它整合了Amazon Athena、Amazon EMR、AWS Glue、Amazon Redshift、Amazon Managed Workflows for Apache Airflow (MWAA)以及现有的SageMaker Studio中的工具和功能。

其次是Amazon SageMaker Lakehouse,可以统一Amazon S3数据湖、Amazon Redshift数据仓库和第三方及联合数据源。

067f0b8042db5af8e2dc33b283174d9c.png

亚马逊云科技的“AI步法”

在看完本届re:Invent所有内容和实力之后,亚马逊云科技在生成式AI时代的发展路径其实也就比较清晰了——

从客户的真实业务需求出发。

上文种种内容的更新,都是基于“客户的服务出现了什么问题”,包括计算、存储、数据库上的瓶颈,包括客户在模型上的选择,再包括应用上的迁移服务等等。

af84accfa78429ff713bb0559ed44816.png

洞悉了背后的实用主义逻辑,也就不难理解,亚马逊云科技为何选择在这个时间节点上发布一系列多模态大模型,还是因为客户有需要。

这种需要,具体而言,就是客户在模型上的选择,毕竟“没有一个模型可以一统天下”,每个模型都有自己所擅长的领域。

但亚马逊云科技所做的,是利用自己在基础设施、工具/模型和应用三个层面的深耕和实力,给客户多提供了一个“快、好、省”的选项。

c9e882581c28d989fd703060970499a9.png

回顾亚马逊云科技的起步,似乎这一点从未变过。

正如Matt在大会上回忆的那样:

亚马逊云科技在2006年推出时,初创公司是第一批用户,他们总是非常积极地采用新技术,并且能够提供有价值的反馈。

ccfa5ac26cd91230f8950069a73466dd.png

而这种反馈也进一步推动了亚马逊云科技的发展,也有助于理解如何更好地支持创业精神。

因此,Matt在大会中还宣布了一个重磅消息:

将在2025年为全球的初创公司提供10亿美元的资金支持!

One More Thing

本届re:Invent共计6万人参与,来感受一下这个热情、这个feel~

b6c099fbf637e0c9107bb067bccee6f4.gif

参考链接:
[1]https://www.aboutamazon.com/news/aws/amazon-nova-artificial-intelligence-bedrock-aws
[2]https://aws.amazon.com/blogs/aws/amazon-ec2-trn2-instances-and-trn2-ultraservers-for-aiml-training-and-inference-is-now-available/
[3]https://aws.amazon.com/blogs/aws/new-amazon-s3-tables-storage-optimized-for-analytics-workloads/

—  —

点这里👇关注我,记得标星哦~

相关文章:

“云计算一哥”一口气发布6个大模型、3nm芯片!多模态还要搞Any-to-Any

金磊 发自 拉斯维加斯量子位 | 公众号 QbitAI 就在刚刚,云计算一哥亚马逊云科技,在大模型这件事儿上搞了波大的—— 亚马逊CEO Andy Jassy亲自站台re:Invent24,发布自家新款AI多模态系列大模型,名曰Amazon Nova。 而且是一口气涵盖…...

pytest生成报告no tests ran in 0.01s

除了基本的环境配置、用例名要以test_开头,有个地方是我自己忽略了,在执行时没有指定用例文件,所以没有找到。 if __name__ __main__:pytest.main(["testcases/test_demo.py","-svq", __file__, --alluredir./allure-r…...

如何修改DNS解析?

DNS(域名系统)就像互联网的“电话簿”,负责将我们输入的网址转换为计算机能够理解的IP地址。如果DNS解析出现问题,访问网站就会受到影响。那我们该如何修改DNS解析呢?接下来,我们就来介绍一下这个话题。 为什么要修改DNS解析? 使用默认的…...

PyTorch 中 `torch.cuda.amp` 相关警告的解决方法

在最近的写代码过程中,遇到了两个与 PyTorch 的混合精度训练相关的警告信息。这里随手记录一下。 警告内容 警告 1: torch.cuda.amp.autocast FutureWarning: torch.cuda.amp.autocast(args...) is deprecated. Please use torch.amp.autocast(cuda, args...) i…...

微服务组件LoadBalancer负载均衡

SpringCloud 从 2020.0.1 版本开始,移除了 Ribbon 组件,使⽤Spring Cloud LoadBalancer 组件来代 替 Ribbon 实现客户端负载均衡 loadbalancer负载均衡: 复制一份provider项目,服务名一致,端口号不一致,让consumer调…...

如何本地部署DeepSeek

第一步:安装ollama https://ollama.com/download 打开官网,选择对应版本 第二步:选择合适的模型 https://ollama.com/ 模型名称中的 1.5B、7B、8B 等数字代表模型的参数量(Parameters),其中 B 是英文 B…...

vite + axios 代理不起作用 404 无效

vite axios 代理不起作用 先看官方示例 export default defineConfig({server: {proxy: {// 字符串简写写法/foo: http://localhost:4567,// 选项写法/api: {target: http://jsonplaceholder.typicode.com,changeOrigin: true,rewrite: (path) > path.replace(/^\/api/, )…...

centos7 升级openssl并安装python3

参考文章:https://www.cnblogs.com/chuanzhang053/p/17653635.html 卸载已有版本 yum remove -y openssl openssl-devel下载1.1版本 wget https://www.openssl.org/source/openssl-1.1.1v.tar.gztar -zxf openssl-1.1.1v.tar.gz 查看openssl.conf文件的目录 fin…...

使用 SDKMAN! 在 Mac(包括 ARM 架构的 M1/M2 芯片)上安装 Java 8

文章目录 1. 安装 SDKMAN!2. 查找可用的 Java 8 版本3. 安装 Java 84. 验证安装5. 切换 Java 版本(可选)6. 解决 ARM 架构兼容性问题总结 可以使用 SDKMAN! 在 Mac(包括 ARM 架构的 M1/M2 芯片)上安装 Java 8。SDKMAN! 是一个强大…...

【干活分享】2025年可以免费问答的一些GPT网站-deepseek等免费gpt

2025年已经到来,大家也都陆续回归到忙碌的工作中。在新的一年里,如何更高效地完成工作任务,提升工作效率,是很多人关心的问题。今天,就为大家分享一些实用性很强的GPT网站,帮助大家在工作中事半功倍。 Dee…...

20250211解决荣品的RK3566核心板在Android13下出现charge_extrem_low_power的问题

20250211解决荣品的RK3566核心板在Android13下出现charge_extrem_low_power的问题 2025/2/11 17:45 缘起:荣品的RK3566核心板在Android13下,出现charge_extrem_low_power之后就直接挂住了。 由于我司使用了CW2217这个电量计,没有使用核心板自…...

MapReduce到底是个啥?

在聊 MapReduce 之前不妨先看个例子:假设某短视频平台日活用户大约在7000万左右,若平均每一个用户产生3条行为日志:点赞、转发、收藏;这样就是两亿条行为日志,再假设每条日志大小为100个字节,那么一天就会产…...

算法02-各种排序算法

各种常见排序算法总结 一. 冒泡排序 (Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地遍历要排序的列表,比较相邻的元素,并交换它们的位置,直到整个列表排序完成。 A、说明: 特点: 通过不断交换相邻元素&am…...

python基础入门:8.1项目1:爬虫与数据分析

Python爬虫与数据分析全流程实战:从数据采集到可视化呈现 # 综合案例:电商价格监控分析系统 import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt# 配置参数 HEADERS {User-Agent: Mozilla/5.0 (Wind…...

git 克隆指定 tag 的项目

git 克隆指定 tag 的项目 一、克隆指定tag的项目二、验证克隆结果 一、克隆指定tag的项目 以 tinyxml2项目 为例说明: git clone --branch V10.0.0 https://github.com/leethomason/tinyxml2.git解释: git clone:这是克隆一个远程仓库的命…...

DeepSeek学习笔记之——初识DeepSeek

春节假期回来已经有一周时间了,这假期综合症的症状是一点没减~~~ 假期期间除了这个欢乐详和的节日气氛,就数DeepSeek最火热了!!! 什么是DeepSeek? DeepSeek是一款由国内人工智能公司研发的大型语言模型,…...

Linux 调用可执行程序

Linux 调用可执行程序 1. system() 函数1.1 system() 函数的声明1.2 system() 函数的不同场景返回值1.3 system() 函数的代码示例 2. exec() 函数族2.1 exec() 函数族的声明2.2 exec() 函数族执行失败的情况2.3 exec() 函数族的代码示例 3. exec() 与 system() 的区别以及使用注…...

MVCC面试怎么答

说到mvcc这个比较抽象的概念,很多人都有点束手无策。因为它实际上偏理论,实际应用中很难用到。但在面试中出现频率又很高,一问大部分都G。所以怎么精简回答并且能抓住重点就很关键了。往上详细解说MVCC的太多了,我这里没那么多废话…...

用Go实现 SSE 实时推送消息(消息通知)——思悟项目技术4

目录 简介 工作原理 例子 使用场景 简介 SSE(Server - Sent Events)是一种允许服务器向客户端实时推送更新的 Web 技术。是一种基于 HTTP 协议的单向通信机制,服务器可以在客户端建立连接后,持续不断地向客户端发送事件流。客…...

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 0基础…...

vue3:动态渲染后端返回的图片

问: div classleft-png 这里我用css设置了他的背景图片,但是现在我希望改为后端返回的图片,怎么写? 后端返回数据: const centerdata {img:;xxxx,title,xxxx,num:xxxx}? 回答: 好的&#xff…...

DeepSeek小白初识指南

1.什么是DeepSeek? DeepSeek是一个基于大语言模型(LLM)的智能助手,能够处理自然语言理解、生成、对话等任务。它广泛应用于聊天机器人、内容生成、数据分析等领域。 2.DeepSeek和OpenAI等大模型差异? 虽然DeepSeek和Op…...

图像锐化(QT)

如果不使用OpenCV,我们可以直接使用Qt的QImage类对图像进行像素级操作来实现锐化。锐化算法的核心是通过卷积核(如拉普拉斯核)对图像进行处理,增强图像的边缘和细节。 以下是一个完整的Qt应用程序示例,展示如何使用Qt…...

38.社区信息管理系统(基于springboothtml)

目录 1.系统的受众说明 2.需求分析及相关技术 2.1设计目的 2.2社区信息管理系统的特点 2.3可行性分析 2.3.1技术可行性 2.3.2运行可行性 2.4系统设计 2.4.1系统功能分析 2.4.2管理员权限功能设计 2.4.3业主权限功能设计 2.5系统的技术介绍 2.5.1 Html 2.5.2 Aja…...

游戏引擎学习第98天

仓库:https://gitee.com/mrxiao_com/2d_game_2 开始进行一点回顾 今天的目标是继续实现正常贴图的操作,尽管目前我们还没有足够的光照信息来使其完全有用。昨日完成了正常贴图相关的基础工作,接下来将集中精力实现正常贴图的基本操作,并准备…...

音频知识基础

音频知识基础 声音属性声音度量人耳特性通道数音频数字化传输接口 声音属性 响度 响度是人耳对声音强弱的主观感受; 主要和声波的振幅相关,同时也和频率有一定关系; 音调 音调是人耳对声音高低的主观感受; 主要与频率相关&#…...

【AI赋能】蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手

蓝耘智算平台实战指南:3步构建企业级DeepSeek智能助手 引言:AI大模型时代的算力革命 在2025年全球AI技术峰会上,DeepSeek-R1凭借其开源架构与实时推理能力,成为首个通过图灵测试的中文大模型。该模型在语言理解、跨模态交互等维…...

LabVIEW无人机飞行状态监测系统

近年来,无人机在农业植保、电力巡检、应急救灾等多个领域得到了广泛应用。然而,传统的目视操控方式仍然存在以下三大问题: 飞行姿态的感知主要依赖操作者的经验; 飞行中突发的姿态异常难以及时发现; 飞行数据缺乏系统…...

DeepSeek模型架构及优化内容

DeepSeek v1版本 模型结构 DeepSeek LLM基本上遵循LLaMA的设计: 采⽤Pre-Norm结构,并使⽤RMSNorm函数. 利⽤SwiGLU作为Feed-Forward Network(FFN)的激活函数,中间层维度为8/3. 去除绝对位置编码,采⽤了…...

html语义化

常见语义化标签有&#xff1a; &#xff08;1&#xff09;页面结构标签&#xff1a;<header>、<nav>、<main>、<article>、<section>、<aside>、<footer> &#xff08;2&#xff09;文本语义标签&#xff1a;<h1>-<h6>…...