当前位置: 首页 > news >正文

网络安全检测思路

对于主机的安全检测,我们通常直接采用nmap或者类似软件进行扫描,然后针对主机操作系统及其 开放端口判断主机的安全程度,这当然是一种方法,但这种方法往往失之粗糙,我仔细考虑了一下,觉 得按下面的流程进行判别是比较完整的。

 1、通过DNS查询得到目标的网络拓扑基本情况,比如有几台主机,各自起的服务是什么等等。这是必要 的步骤因为我们检测应该针对网络,而不是单一主机。

2、用nmap进行端口扫描,判断操作系统,结合自己的一些经验,必要的时候抓banner,判断出目标主 机的操作系统类型。

3、用nessus进行普通漏洞的扫描,得到一个大致的报告。对报告进行分析。nessus的报告有些地方并不 准确,而且有漏扫或误报的情况,比如严重的unicode漏洞机器明明有,它却会扫不到,对这种情况我们 必须有人工的判断。

 4、cgi漏洞也必须有专门的扫描器进行,可以结合whisker或者twwwscan或者xscan,自己判断需要增加 哪些危险cgi的检测。

上面只是最简单的,任何一个初学电脑的人可能都能够较好完成的工作流程,但是如果在上面的各 种扫描方式得到的信息无法分析出目标操作系统的情况甚至系统类型的时候,应该怎么办呢?这种事情 现在经常遇到,因为大多数防火墙或者入侵检测系统现在都具备了动态地将tcp/ip协议栈――如TTL、T OS、DF、滑动窗口大小等修改或者屏蔽,使扫描工具无法得出正确结果的功能。互联网上也有许多免费 工具可以达到这一效果。

因此下面要谈到其它检查方式

1、在有防火墙的情况下:建议可以使用如hping、firewalk之类的工具,更加灵活地探测目标主机的情 况,根据数据包的返回做更进一步的判断。这需要操作者掌握TCP/IP基本知识,并能灵活运用判断。

 2、对主页程序的检测,虽然我们只能在外面做些基本的输入验证检测。但按照现在常见的web错误,我 们可以从下面几个方面着手分析:

a、特殊字符的过滤: &; \"|*?~^()[]{}$\n\r 这些字符由于在不同的系统或运行环境中会具有特殊 意义,如变量定义/赋值/取值、非显示字符、运行外部程序等,而被列为危险字符但在许多编程语言、 开发软件工具、数据库甚至操作系统中遗漏其中某些特殊字符的情况时常出现,从而导致出现带有普遍 性的安全问题。当有需要web用户输入的时候,根据不同的数据库系统、编程语言提交带不同参数变量 的url,很可能造成服务器端资料泄露甚至可执行系统命令。

 b、WEB服务器的错误编码或解码可能会导致服务器信息的泄露、可执行命令、源代码泄露等错误。比较 典型的应该是unicode漏洞以及各种iis服务器、apache服务器的源代码泄露漏洞。

c、利用程序错误的边界判断而造成的缓冲区溢出进行攻击。最近的一个典型案例应该是eeye.com发现 的.printer溢出漏洞。这是web server本身的问题;但网站应用程序的编写者也可能犯下同样的错误, 就是对户输入不加验证。但这方面的错误比较不容易试出来。 通过这样一个过程,应该说在远程扫描,没有本地帐号或者权限的情况下,能够搜集到尽量多的信 息了。当然,主机面临的并非是远程风险,还需要具体分析。

相关文章:

网络安全检测思路

对于主机的安全检测,我们通常直接采用nmap或者类似软件进行扫描,然后针对主机操作系统及其 开放端口判断主机的安全程度,这当然是一种方法,但这种方法往往失之粗糙,我仔细考虑了一下,觉 得按下面的流程进行…...

ios通过xib创建控件

之前写过ios动态创建控件及添加事件,纯手工代码写控件,虽然比较灵活,但是就是代码量比较多。这次我们通过xib来创建app下载列表项 AppView.xib。一个imageview,一个label,一个button构成 1.创建AppView.xib 2.再创建xib对应的mode&#xff0…...

跟着李沐老师学习深度学习(八)

数值稳定性 模型初始化和激活函数 数值稳定性 神经网络的梯度 考虑如下d层的神经网络(t代表层) 计算损失 l 关于参数 Wt 的梯度: 这样的矩阵乘法带来的问题: (1)梯度爆炸 (2)梯度…...

元宵小花灯

吃完饭散步回来的路上,看到一个小朋友拿着元宵小灯,后面的家长也闲适的哼着歌。 想起前阵子看到说,大人爱看小孩玩,也是共享那份天真快乐吧。 我小时候每年的元宵节,也有自己的小灯,那是九几年&#xff0c…...

算法——搜索算法:原理、类型与实战应用

搜索算法:开启高效信息检索的钥匙 在信息爆炸的时代,搜索算法无疑是计算机科学领域中熠熠生辉的存在,它就像一把神奇的钥匙,为我们打开了高效信息检索的大门。无论是在日常生活中,还是在专业的工作场景里,…...

告别传统测量:三维扫描仪测量工件尺寸

在现代制造业中,精确测量工件尺寸是确保产品质量和生产效率的关键环节。然而,传统测量方法往往存在效率低下、精度不足以及操作复杂等问题,难以满足高精度和复杂形状工件的测量需求。 传统工件尺寸测量主要依赖于卡尺、千分尺、三坐标测量仪…...

win32汇编环境,对话框程序使用跟踪条(滑块)控件示例一

;运行效果 ;win32汇编环境,对话框程序使用跟踪条控件示例一 ;生成2条横的跟踪条,分别设置不同的数值范围,设置不同的进度副度的例子 ;直接抄进RadAsm可编译运行。重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>>…...

WordPress 角标插件:20 种渐变色彩搭配,打造专属菜单标识

源码介绍 WordPress 角标插件使用教程 本插件旨在为 WordPress 菜单添加角标,并且支持 20 种不同的角标样式。 使用步骤 您可以在 WordPress 后台的“插件”页面中,找到“WordPress 角标插件”,然后点击激活按钮。您需要进入主题的菜单设置…...

【鸿蒙开发】第二十九章 Stage模型-应用上下文Context、进程、线程

目录 1 Stage模型基本概念 1.1 开发流程 3 应用上下文Context的典型使用场景 3.1 获取应用文件路径 3.2 获取和修改加密分区 3.3 获取本应用中其他Module的Context 3.4 订阅进程内UIAbility生命周期变化 4 进程 4.1 概述 5 线程 5.1 线程类型 5.2 使用EventHub进行线…...

window 安装GitLab服务器笔记

目录 视频: 资源: Linux CeneOS7: VMware: Linux无法安装 yum install vim -y 1.手动创建目录 2.下载repo PS 补充视频不可复制的代码 安装GitLab *修改root用户密码相关(我卡在第一步就直接放弃了这个操作&…...

3dgs 2025 学习笔记

CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)_cvpr2024-structure-awaresparse-viewx-ray3dreconstr-CSDN博客 https://github.com/apple/ml-hugs 3DGS COLMAP-Free 3D Gaussian Splatting ⭐code &…...

2024.1.2版本Android Studio gradle下载超时问题处理

一、问题背景 在项目的根build.gradle里面配置了以下地址后,依旧下载gradle包失败,平常如果出现第三方库或者gradle下载失败,配置以下地址,一般可以下载成功 maven { url https://maven.aliyun.com/repository/public } maven { url https://maven.aliyun.com/nex…...

ffmpeg学习:ubuntu下编译Android版ffmpeg-kit

文章目录 前言一. 配置环境1.1 虚拟机版本1.2 安装Android环境1.2.1 Android SDK安装1.2.2 Android NDK安装 1.3 编译前的准备工作1.3.1 libtasn1-1安装1.3.2 meson安装1.3.3 harfbuzz下载 二. 编译ffmpeg-kit三. 总结 前言 ffmpeg-kit是一款跨多个平台的,用于在应…...

mydb:TM实现

一、说明 TM就是事务管理:实现对于事务的新增(active)、事务的状态修改(commit、abort)、事务的状态判断 二、事务管理 2.1创建xid文件/打开xid文件 创建xid、写一个空的 XID 文件头并创建TM public static Transac…...

神经缩放定律:涌现能力与神经元数量、参数数量、数据集大小以及训练所使用的计算量有关

大语言模型的神经缩放定律 大语言模型(LLMs)在自然语言处理领域取得了显著进展,这很大程度上得益于神经缩放定律。该定律指出,模型的损失与模型规模、数据集大小以及训练所使用的计算量呈幂律关系 ,随着模型参数、数据量等的增加,模型会展现出涌现能力,性能会有质的飞跃…...

Microsoft Porject常用字段描述

点击下载《Microsoft Porject常用字段描述》 1. 前言 Microsoft Project 是项目管理中不可或缺的工具,它通过丰富的列(字段)帮助项目经理全面跟踪和管理项目的各个方面。这些列名通常以简称的形式出现,如 ACWP、BCWP、BCWS 等&a…...

web前端开发中vscode常用的快捷键

1.快速复制一行 快捷键: shiftalt 下箭头(上箭头) 或者 ctrlc 然后 ctrlv 2.选定多个相同的单词 快捷键: ctrl d 先双击选定一个单词,然后按下 ctrl d 可以往下依次选择相同的单词。 这样同时修改相同的单词 3.全局替换某单词 当我们一个…...

鲲鹏(ARM64)升级GCC

1、下载压缩包 wget http://ftp.gnu.org/gnu/gcc/gcc-9.5.0/gcc-9.5.0.tar.xz2、解压 tar -xvf gcc-9.5.0.tar.xzcd gcc-9.5.03、下载关联软件 ./contrib/download_prerequisites4、新建文件夹 mkdir build && cd build5、配置 ../configure -enable-checkingrelea…...

国产操作系统安装DeepSeek

从年前到现在,DeepSeek这款语言AI模型,一经发布直接在全球爆火,在热搜上更是牢牢占据一席之地。无论是技术大神,还是紧跟潮流的技术小白,都被它强大的自然语言处理能力所吸引。作为国产操作系统的用户,千万…...

安科瑞 Acrel-2000ES:解锁储能管理新高度,引领能源未来!

安科瑞 崔丽洁 在能源转型的关键时期,高效的储能管理成为众多企业和项目的核心需求。今天,就给大家介绍一款储能管理的 “神器”—— 安科瑞 Acrel-2000ES 储能能量管理系统。 安科瑞电气可是行业内的 “明星企业”,2003 年成立,2…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...