当前位置: 首页 > news >正文

CNN-BiGRU卷积神经网络双向门控循环单元多变量多步预测,光伏功率预测

在这里插入图片描述
在这里插入图片描述

CNN-BiGRU卷积神经网络双向门控循环单元多变量多步预测,光伏功率预测

代码下载:CNN-BiGRU卷积神经网络双向门控循环单元多变量多步预测,光伏功率预测

一、引言
1.1、研究背景及意义

随着全球能源危机和环境问题的日益严重,可再生能源的开发利用成为研究的热点。太阳能作为一种清洁能源,因其资源丰富、无污染等优点,受到广泛关注。光伏发电作为太阳能利用的主要形式之一,其功率输出具有间歇性和波动性,这对电网的稳定运行带来挑战。因此,准确的光伏功率预测对于电力系统的调度和管理至关重要,可以有效减轻光伏发电对电网的冲击,提高电力系统的稳定性和经济效益。

1.2、研究现状

目前,光伏功率预测方法主要包括物理模型法和数据驱动法。物理模型法依赖于光伏电池的物理特性,但计算复杂且对天气条件敏感。数据驱动法如人工神经网络、支持向量机等,虽提高了预测精度,但仍存在对复杂天气条件适应性差、预测步长有限等问题。

1.3、研究目的与内容

针对现有方法的不足,本研究提出了一种结合卷积神经网络(CNN)和双向门控循环单元(BiGRU)的新型预测模型CNN-BiGRU。该模型利用CNN提取多变量时间序列数据中的空间特征,并通过BiGRU学习这些特征的长期依赖关系,实现对光伏功率的超前多步预测。研究内容包括模型的设计、训练及在实际数据中的验证分析,旨在提高光伏功率预测的准确性和稳定性。

二、理论基础
2.1、光伏功率预测概述

光伏功率预测是通过分析历史气象数据、光伏系统运行数据等,预测未来某一时间点或时间段的光伏发电功率。这一过程涉及数据处理、特征提取和模型建立等多个步骤。准确的光伏功率预测可以帮助电力系统优化调度,提高电网的稳定性和可靠性。

2.2、卷积神经网络(CNN)

卷积神经网络是一种深度学习模型,广泛应用于图像处理和序列数据分析。CNN通过卷积层自动提取输入数据中的局部特征,并通过池化层减少数据的维度,从而降低计算复杂度。在光伏功率预测中,CNN可以有效捕捉多变量输入数据(如光照强度、温度、风速等)中的时间或空间局部特征。

2.3、双向门控循环单元(BiGRU)

双向门控循环单元是循环神经网络(RNN)的一种变体,它结合了向前和向后的信息流,能够更全面地捕捉序列数据中的长期依赖关系。BiGRU通过门控机制控制信息的流动,避免了长期序列训练中的梯度消失问题。在光伏功率预测中,BiGRU利用CNN提取的特征信息,进一步学习这些特征之间的时序依赖关系,实现对光伏功率输出的超前多步预测。

三、模型构建
3.1、数据预处理

在构建预测模型之前,首先需要对原始数据进行预处理。这包括数据清洗、缺失值处理和归一化等步骤。数据清洗主要是去除数据中的噪声和异常值,缺失值处理则是通过插值等方法填补数据中的空缺。归一化是将数据按比例缩放,使之落在一个较小的区间内,以减少模型训练中的计算难度和提高模型的收敛速度。

3.2、模型结构设计

CNN-BiGRU模型结合了CNN和BiGRU的优点,具体结构如下:首先,多变量输入数据经过CNN层的卷积和池化操作,提取出局部特征。这些特征随后被送入BiGRU层,BiGRU层由两个方向的GRU组成,能够同时捕捉序列的正向和反向信息,从而更全面地学习序列的长期依赖关系。输出层则通过全连接层,将学习到的特征映射到预测的光伏功率值,实现超前多步预测。

3.3、模型训练与优化

模型训练采用历史数据集,通过反向传播算法优化模型参数。在训练过程中,为了防止过拟合,采用了dropout正则化技术。此外,通过调整学习率、批次大小等超参数,优化模型的性能。模型训练的目标是最小化预测值与实际值之间的均方误差(MSE),从而提高预测的准确性。

四、实验与结果分析
4.1、实验设置

实验采用某地区的光伏发电站的实际运行数据。实验参数设置包括卷积核大小、池化层大小、BiGRU单元数等,通过交叉验证方法确定最优参数组合。

4.2、结果展示

实验结果显示,CNN-BiGRU模型在光伏功率预测中表现出良好的性能。预测曲线能够紧密跟随实际功率变化,特别是在光照强度变化较大的情况下,模型依然能够准确预测光伏功率的输出。图示和数值结果均表明,CNN-BiGRU模型在超前多步预测方面具有明显优势。

4.3、性能评估

为了评估模型的性能,采用均方根误差(RMSE)、平均绝对百分比误差(MAPE)和决定系数(R²)等指标。

五、结论与展望
5.1、研究总结

本研究成功构建了CNN-BiGRU模型,用于光伏功率的超前多步预测。实验结果表明,该模型在预测精度和稳定性方面均优于传统方法,能够有效应对复杂天气条件下的光伏功率预测挑战。

5.2、研究限制

尽管CNN-BiGRU模型表现出了良好的预测性能,但模型的训练过程较为复杂,计算资源消耗较大。此外,模型对数据质量要求较高,数据预处理过程需要仔细设计。

5.3、未来研究方向

未来的研究将探索更高效的特征提取和模型优化方法,降低计算成本。同时,研究将扩展到其他可再生能源预测领域,如风能预测等,进一步验证模型的通用性和有效性。

相关文章:

CNN-BiGRU卷积神经网络双向门控循环单元多变量多步预测,光伏功率预测

CNN-BiGRU卷积神经网络双向门控循环单元多变量多步预测,光伏功率预测 代码下载:CNN-BiGRU卷积神经网络双向门控循环单元多变量多步预测,光伏功率预测 一、引言 1.1、研究背景及意义 随着全球能源危机和环境问题的日益严重,可再…...

钉钉位置偏移解决,钉钉虚拟定位打卡

虚拟定位打卡工具 一,介绍免费获取工具 一,介绍 提到上班打卡,职场人的内心戏估计能拍成一部连续剧。打卡,这俩字仿佛自带“紧箍咒”,让无数打工人又爱又恨。想象一下,你气喘吁吁地冲进办公室,…...

【面试集锦】如何设计SSO方案?和OAuth有什么区别?

如何设计SSO方案?和OAuth有什么区别?--楼兰 带你聊最纯粹的Java ​ 如果面试问你,你会做一个权限系统吗?那你肯定会说做过。不就是各种登录、验证吗。我做的第一个CRUD应用就是注册、登录。简单!但是,如果问你在工作中真的做过权限系统吗?其实很多人都只能默默摇摇头。因…...

Python 基于 OpenCV 的人脸识别上课考勤系统(附源码,部署教程)

博主介绍:✌2013crazy、10年大厂程序员经历。全网粉丝12W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&a…...

vcredist_x64.exe 是 Microsoft Visual C++ Redistributable 的 64 位版本

vcredist_x64.exe 是 Microsoft Visual C++ Redistributable 的 64 位版本,它提供了运行基于 Visual C++ 编写的应用程序所需的库文件。许多 Windows 应用程序都依赖这些库来正常运行,特别是使用 Visual Studio 编译的程序。 用途和重要性: 运行时库:vcredist_x64.exe 安装…...

Tailwind CSS 的核心理念

实用优先(Utility-First) Tailwind CSS 的最核心理念是"实用优先"。这种方法颠覆了传统的 CSS 开发方式,不再编写自定义的类名和样式规则,而是通过组合预定义的工具类来构建界面。这种方式带来了以下优势: …...

集成学习(二):从理论到实战(附代码)

接上一篇续写《集成学习(一):从理论到实战(附代码)》 五、实用算法 5.1 随机森林 随机森林在数据集的各个子样本上拟合许多决策树分类器,并使用平均来提高预测精度和控制过拟合。每一个分类器拟合了一部分随机样本,…...

HTML 链接

HTML 链接 引言 HTML(超文本标记语言)是构建网页的基础,而链接是网页中不可或缺的元素。链接不仅能够连接到其他网页,还能实现网页内部内容的跳转。本文将详细介绍HTML链接的用法、属性以及如何实现链接的优化。 HTML链接的基本…...

【机器学习】数据预处理之scikit-learn的Scaler与自定义Scaler类进行数据归一化

scikit-learn的Scaler数据归一化 一、摘要二、训练数据集和测试数据集的归一化处理原则三、scikit-learn中的Scalar类及示例四、自定义StandardScaler类进行数据归一化处理五、小结 一、摘要 本文主要介绍了scikit-learn中Scaler的使用方法,特别强调了数据归一化在…...

android的第一个app项目(java版)

一.学习java重要概念 java的基本类型的语言方法和C语言很像,这都是我们要学的东西和学过的东西。那些基础东西,就不和大家讨论了,一起看一下java的一些知识架构。 1.封装 封装是面向对象编程中的一个核心概念,它涉及到将数据和操…...

上位机知识篇---SSHSCP密钥与密钥对

文章目录 前言第一部分:SCP(Secure Copy Protocol)功能使用方法1.从本地复制到远程主机2.从远程主机复制到本地3.复制整个目录4.指定端口5.压缩传输 第二部分:SSH(Secure Shell)功能使用方法1.远程登录2.指…...

智慧物流新引擎:ARM架构工控机在自动化生产线中的应用

工业自动化程度的不断提升,对高性能、低功耗和高可靠性的计算设备需求日益增长。ARM架构工控机因其独特的优势,在多个工业领域得到了广泛应用。本文将深入探讨ARM架构工控机的特点及其在具体工业场景中的应用。 ARM架构工控机的主要优势 高效能与低功耗…...

[MySQL]2-MySQL索引

目录 1.索引🌟 1.1索引结构 B树 B树 聚簇索引(一级索引)与非聚簇索引(二级索引) 回表操作 1.2索引碎片 清理索引碎片的方法 1.3索引匹配方式🌟 在数据列上使用函数或者计算会导致索引失效的原因 …...

DeepSeek冲击下,奥特曼刚刚给出对AGI的「三个观察」,包括成本速降

来源 | 机器之心 今天凌晨,OpenAI CEO 再次发布长文,重申自己对于 AGI 的三个观察。 核心观点如下: 1. 人工智能模型的智能大致等于用于训练和运行该模型的资源的对数。 2. 使用一定水平的人工智能的成本每 12 个月就会下降约 10 倍&#x…...

新数据结构(8)——包装类

基本数据类型(轻点) Java基本数据类型在内存中占用固定的大小,并且直接存储值,而不是对象的引用 整数类型 byte:8位,存储范围从-128到127 short:16位,存储范围从-32,768到32,767 …...

P5:使用pytorch实现运动鞋识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 我的环境 语言环境:python 3.7.12 编译器:pycharm 深度学习环境:tensorflow 2.7.0 数据:本地数据集-运动鞋 一…...

讲解下SpringBoot中MySql和MongoDB的配合使用

在Spring Boot中,MySQL和MongoDB可以配合使用,以充分发挥关系型数据库和非关系型数据库的优势。MySQL适合处理结构化数据,而MongoDB适合处理非结构化或半结构化数据。以下是如何在Spring Boot中同时使用MySQL和MongoDB的详细讲解。 1. 添加依…...

《手札·行业篇》开源Odoo MES系统与SKF Observer Phoenix API在化工行业的双向对接方案

一、项目背景 化工行业生产过程复杂,设备运行条件恶劣,对设备状态监测、生产数据采集和质量控制的要求极高。通过开源Odoo MES系统与SKF Observer Phoenix API的双向对接,可以实现设备状态的实时监测、生产数据的自动化采集以及质量数据的同步…...

数据结构与算法之数组: LeetCode 905. 按奇偶排序数组 (Ts版)

按奇偶排序数组 https://leetcode.cn/problems/sort-array-by-parity/description/ 描述 给你一个整数数组 nums,将 nums 中的的所有偶数元素移动到数组的前面,后跟所有奇数元素。 返回满足此条件的 任一数组 作为答案。 示例 1 输入:n…...

【STM32】HAL库Host MSC读写外部U盘及FatFS文件系统的USB Disk模式

【STM32】HAL库Host MSC读写外部U盘及FatFS文件系统的USB Disk模式 在先前 分别介绍了FatFS文件系统和USB虚拟U盘MSC配置 前者通过MCU读写Flash建立文件系统 后者通过MSC连接电脑使其能够被操作 这两者可以合起来 就能够实现同时在MCU、USB中操作Flash的文件系统 【STM32】通过…...

Python如何给视频添加音频和字幕

在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

c# 局部函数 定义、功能与示例

C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

面试高频问题

文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析

MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...

C# WPF 左右布局实现学习笔记(1)

开发流程视频: https://www.youtube.com/watch?vCkHyDYeImjY&ab_channelC%23DesignPro Git源码: GitHub - CSharpDesignPro/Page-Navigation-using-MVVM: WPF - Page Navigation using MVVM 1. 新建工程 新建WPF应用(.NET Framework) 2.…...

Ray框架:分布式AI训练与调参实践

Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...

学习 Hooks【Plan - June - Week 2】

一、React API React 提供了丰富的核心 API,用于创建组件、管理状态、处理副作用、优化性能等。本文档总结 React 常用的 API 方法和组件。 1. React 核心 API React.createElement(type, props, …children) 用于创建 React 元素,JSX 会被编译成该函数…...

关于 ffmpeg设置摄像头报错“Could not set video options” 的解决方法

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/148515355 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...