当前位置: 首页 > news >正文

论文第二次阅读笔记

摘要学习

存在问题:目前流行的图神经网络仅通过欧几里得几何及其相关的向量空间操作来建模数据,存在局限性
我们通过提出一种数学上有根据的图卷积网络(GCN)的推广,将其扩展到常曲率空间(或其乘积空间),从而填补了这一空白。
一是引入一种统一的形式主义,可以在所有常曲率几何之间平滑过渡。

引入学习

图卷积网络GCN

在这里插入图片描述

图拉普拉斯矩

在这里插入图片描述

归一化

在这里插入图片描述

拉普拉斯特征值和特征向量

在这里插入图片描述
在这里插入图片描述

拉普拉斯特征值的应用( 图神经网络(GNN))

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GCN结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

机器学习中的欧几里得几何

在这里插入图片描述

黎曼几何

在这里插入图片描述

黎曼度量:简单概括就是每个不同曲率下的内积,当曲率为0时,就是常见的内积。黎曼度量定义了长度、角度、曲率

在这里插入图片描述

相关文章:

论文第二次阅读笔记

摘要学习 存在问题:目前流行的图神经网络仅通过欧几里得几何及其相关的向量空间操作来建模数据,存在局限性 我们通过提出一种数学上有根据的图卷积网络(GCN)的推广,将其扩展到常曲率空间(或其乘积空间),从而填补了这一空白。 一是引入一种统一的形式主义,可以在所有常…...

【Android开发AI实战】选择目标跟踪基于opencv实现——运动跟踪

文章目录 【Android 开发 AI 实战】选择目标跟踪基于 opencv 实现 —— 运动跟踪一、引言二、Android 开发与 AI 的融合趋势三、OpenCV 简介四、运动跟踪原理(一)光流法(二)卡尔曼滤波(三)粒子滤波 五、基于…...

系统漏洞扫描服务:安全风险识别与防护指南

系统安全的关键在于漏洞扫描服务,此服务能迅速发现潜在的安全风险。借助专业的扫描工具和技术,它确保系统稳定运作。以下将简要介绍这一服务的主要特点。 扫描原理 系统漏洞扫描服务依赖两种主要手段:一是通过漏洞数据库进行匹配&#xff0…...

2.Excel:滨海市重点中学的物理统考考试情况❗(15)

目录 NO12​ 1.数据透视表​ 2. 3.sum函数 4.sumifs客观/主观平均分​ 5.sumifs得分率​ 6.数字格式修改​ NO3/4/5​ sumifs某一组数据相加,某一范围,某一范围的具体点向下拖拉,锁定列;向左右,锁定行F4&#x…...

使用 React 16+Webpack 和 pdfjs-dist 或 react-pdf 实现 PDF 文件显示、定位和高亮

写在前面 在本文中,我们将探讨如何使用 React 16Webpack 和 pdfjs-dist 或 react-pdf 库来实现 PDF 文件的显示、定位和高亮功能。这些库提供了强大的工具和 API,使得在 Web 应用中处理 PDF 文件变得更加容易。 项目设置 首先,我们需要创建…...

驱动开发系列35 - Linux Graphics GEM Buffer Object 介绍

一:概述 在 Linux 内核中,DRM(Direct Rendering Manager)模块 是用于管理显示硬件和图形渲染的核心框架。它负责协调用户空间应用程序(例如 X Server、Wayland Compositors、Mesa 等)和 GPU 硬件之间的通信,是 Linux 图形子系统的重要组成部分。 GEM (Graphics Executio…...

Java常见的异常类有哪些?

对应异常: 空指针 → NullPointerException数据库 → SQLException数组越界 → IndexOutOfBoundsException文件丢失 → FileNotFoundExceptionIO问题 → IOException强制转 → ClassCastException方法找不到 → NoSuchMethodException数组类型错 → ArrayStoreExce…...

清华大学新闻与传播学院沈阳团队出品的《DeepSeek:从入门到精通》104页PDF

前言 本机运行DeepSeek R1大模型文章如下: Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)【保姆级万字教程】在Windows计算机部署DeepSeek大模型,给在实验室无外网的同事们用(基于Ollama和OpenWebUI…...

增量hdfs数据追平

1、假设客户只改了最近的分区。他不会去修改历史的分区表,如果大量改历史的分区表,那纯纯把hive当mysql用了。这样我们就只能找出变动的表,然后删除,重新迁移。 2、此处是确保他们不会大量改历史分区,只有少部分改&am…...

Linux高并发服务器开发 第十七天(管道缓存区查询大小 管道的优劣 命名管道mkfifo 建立释放映射区mmap/munmap 匿名映射 进程间的通信)

目录 1.pipe管道读写行为 1.1例题:实现父子进程 ls | wc -l 1.2兄弟进程 ls | wc -l 2.管道缓存区 2.1命令查询 2.2函数查询 3.pipe管道的优劣 4.命名管道 fifo 5.mmap 5.1文件进程间通信 5.2建立、释放映射区 5.3匿名映射 6.进程间通信 6.1父子进间通…...

C语言常见概念

目录 第一个C语言程序 main函数 写法&#xff1a; printf和库函数 printf()函数 库函数 关键字 字符和ASCII码表 字符串和\0 转义字符 语句 注释 注释的两种形式 第一个C语言程序 #include<stdio.h>//第一个c语言程序 int main() {printf("Hello World…...

AI代码生成器如何重塑前端开发的工作环境

近年来&#xff0c;人工智能&#xff08;AI&#xff09;技术迅猛发展&#xff0c;深刻地改变着各行各业的工作方式。在软件开发领域&#xff0c;AI写代码工具的出现更是掀起了一场革命&#xff0c;尤其对前端开发工程师的工作环境和协作方式产生了深远的影响。本文将深入探讨AI…...

设计模式-结构型-外观模式

在软件开发中&#xff0c;随着功能的不断迭代&#xff0c;系统会变得越来越复杂&#xff0c;模块之间的依赖关系也会越来越深。这种复杂性会导致代码难以理解、维护和扩展。而外观模式&#xff08;Facade Pattern&#xff09;正是为了解决这一问题而生的。 一、外观模式简介 …...

8.flask+websocket

http是短连接&#xff0c;无状态的。 websocket是长连接&#xff0c;有状态的。 flask中使用websocket from flask import Flask, request import asyncio import json import time import websockets from threading import Thread from urllib.parse import urlparse, pars…...

ARM Cortex-M3/M4 权威指南 笔记【二】架构

一、架构 1.1 架构简介 Cortex-M3/M4 处理器都基于 ARMv7-M 架构。最初的 ARMv7-M 架构是随着 Cortex-M3 处理器一同引入的&#xff0c;而在 Cortex-M4 发布时&#xff0c;架构中又额外增加了新的指令和特性&#xff0c;改进后的架构有时也被称为 ARMV7E-M。要了解 ARM7-M 和…...

HCIA项目实践--静态路由的拓展配置

7.7 静态路由的拓展配置 网络中的两个重要思想&#xff1a; &#xff08;1&#xff09; 实的不行来虚的&#xff1b; &#xff08;2&#xff09; 范围太大&#xff0c;划分范围。&#xff08;分治&#xff09; 7.7.1 负载均衡 &#xff08;1&#xff09;定义 负载均衡是一种网…...

STL中list的模拟实现

文章目录 1. 前言and框架2. 相对完整的框架3. 模拟实现接口1. 迭代器的引入2. 迭代器的区分list迭代器迭代器的构造list迭代器的实现模拟指针解引用前置和前置--后置和--迭代器&#xff01;迭代器-> list的const迭代器迭代器模板迭代器是否需要析构&#xff0c;拷贝构造&…...

计算机网络知识速记:HTTP1.0和HTTP1.1

计算机网络知识速记&#xff1a;HTTP1.0和HTTP1.1 1. 基本概念 1.1 HTTP1.0 HTTP1.0是1996年发布的第一个正式版本&#xff0c;主要用于客户端与服务器之间的简单请求和响应交互。它的设计理念相对简单&#xff0c;适合处理一些基本的网页服务。 1.2 HTTP1.1 HTTP1.1是HTT…...

Apache Kafka 中的认证、鉴权原理与应用

编辑导读&#xff1a;本篇内容将进一步介绍 Kafka 中的认证、鉴权等概念。AutoMQ 是与 Apache Kafka 100% 完全兼容的新一代 Kafka&#xff0c;可以帮助用户降低 90%以上的 Kafka 成本并且进行极速地自动弹性。作为 Kafka 生态的忠实拥护者&#xff0c;我们也会持续致力于传播 …...

DeepSeek自然语言处理(NLP)基础与实践

自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,专注于让计算机理解、生成和处理人类语言。NLP技术广泛应用于机器翻译、情感分析、文本分类、问答系统等场景。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练NLP模型。本文将详细介…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...