利用kali linux 进行自动化渗透测试
本方案旨在自动化创建渗透测试全流程
一、架构
1.智能信息收集体系
class IntelligentOSINT:def __init__(self, target):self.target = targetself.intelligence_sources = ['OSINT_Platforms','DeepWeb_Crawlers', 'SocialMedia_Trackers','ML_Correlation_Engine']def advanced_collection(self):# 多维度智能信息关联results = self.cross_platform_analysis()return self.ml_clustering(results)
2.动态资产指纹技术
class AdvancedFingerprinting:def __init__(self, target):self.target = targetself.techniques = ['MachineLearning_Recognition','Blockchain_TraceBack','CloudNative_Discovery','RealTime_Update_Mechanism']def intelligent_scan(self):# 智能指纹识别fingerprints = self.collect_signatures()return self.ml_predict(fingerprints)
二、攻击面全景评估
1.多维攻击模型
class HolisticAttackSimulator:def __init__(self, target):self.target = targetself.attack_vectors = ['WebApplication','NetworkInfrastructure', 'CloudEnvironment','MicroserviceArchitecture','IoTEcosystem']def simulate_scenarios(self):# 场景化攻击模拟scenarios = self.generate_attack_chains()return self.evaluate_risk(scenarios)
三、对抗性检测引擎
1.进阶威胁模拟
class AdvancedPersistentThreatEmulator:def __init__(self, target):self.target = targetself.evasion_techniques = ['PolymorphicMalware','AntiVM_Detection','MachineLearning_Bypass','DeepFake_Camouflage']def adaptive_penetration(self):# 自适应对抗渗透attack_path = self.generate_stealthy_path()return self.ai_driven_exploitation(attack_path)
四、情报融合架构
1.威胁情报平台
class ThreatIntelligenceFusion:def __init__(self):self.platforms = ['GlobalThreatDB','DarkWebMonitor','GeopoliticalRiskTracker']def unified_intelligence(self, target):# 全球威胁情报关联raw_data = self.collect_global_intel(target)return self.knowledge_graph_analysis(raw_data)
五、自动化合规评估
1.智能合规检测
class ComplianceIntelligentSystem:def __init__(self, target):self.target = targetself.compliance_standards = ['GDPR','ISO27001','NIST_Framework','等级保护2.0']def comprehensive_assessment(self):# 全景合规风险评估compliance_results = self.dynamic_check()return self.risk_scoring(compliance_results)
六、报告智能生成
class NLPReportGenerator:def __init__(self, scan_results):self.results = scan_resultsself.nlp_engine = AdvancedNaturalLanguageProcessor()self.visualization_module = SecurityDataVisualizer()def generate_intelligent_report(self):# 多维度报告生成structured_data = self.parse_technical_results()narrative_report = self.nlp_engine.convert_to_narrative(structured_data)# 可视化攻击路径attack_visualization = self.visualization_module.generate_attack_graph()# 智能修复建议remediation_suggestions = self.generate_remediation_strategies()return {'narrative': narrative_report,'visualization': attack_visualization,'remediation': remediation_suggestions}def generate_remediation_strategies(self):# 基于AI的自动修复建议生成return AIRecommendationEngine().generate_strategies()
七、持续监控与威胁猎杀
1.动态防御平台
class ContinuousDefensePlatform:def __init__(self, organization):self.organization = organizationself.soar_integration = SOARPlatform()self.threat_hunting_engine = ThreatHuntingModule()self.adaptive_defense_model = AdaptiveDefenseModel()def initialize_monitoring(self):# 全方位安全监控self.configure_realtime_detection()self.setup_threat_hunting_workflows()self.enable_adaptive_response()def configure_realtime_detection(self):# 实时威胁检测配置detection_rules = ['AnomalyDetection','BehavioralAnalytics','MachineLearningBasedAlerts']self.soar_integration.deploy_rules(detection_rules)def setup_threat_hunting_workflows(self):# 威胁猎杀工作流hunting_techniques = ['IOC_Correlation','TTPMapping','AdversaryEmulation']self.threat_hunting_engine.configure_workflows(hunting_techniques)def enable_adaptive_response(self):# 自适应响应机制self.adaptive_defense_model.train_on_latest_threats()self.adaptive_defense_model.deploy_intelligent_countermeasures()
八、技术前沿与创新方向
1.前沿安全技术探索
class EmergingSecurityTechnologies:def __init__(self):self.cutting_edge_domains = ['QuantumComputingSecurity','BlockchainSecurityFrameworks','AIAdversarialDefense','NeuroomorphicSecuritySystems']def research_and_development(self):# 前沿技术研究return {'quantum_security': self.explore_quantum_defense(),'blockchain_security': self.analyze_decentralized_protection(),'ai_defense': self.develop_adversarial_resilience()}def explore_quantum_defense(self):# 量子计算安全防御研究quantum_cryptography_methods = ['QuantumKeyDistribution','Post-QuantumCryptography','QuantumRandomNumberGeneration']return QuantumSecurityResearch().investigate(quantum_cryptography_methods)
九、伦理与法律合规扩展
1.法律风险智能评估
class LegalComplianceIntelligentSystem:def __init__(self, organization):self.organization = organizationself.compliance_frameworks = ['GDPR','CCPA','HIPAA','等级保护2.0']self.ai_compliance_engine = AIComplianceRiskAnalyzer()def comprehensive_legal_assessment(self):# 全面法律风险评估legal_risk_profile = self.ai_compliance_engine.analyze_organizational_risk(self.organization,self.compliance_frameworks)return {'risk_score': legal_risk_profile.risk_score,'detailed_recommendations': legal_risk_profile.recommendations,'compliance_gaps': legal_risk_profile.identified_gaps}
十、方案核心建议
后续会逐渐更新
相关文章:
利用kali linux 进行自动化渗透测试
本方案旨在自动化创建渗透测试全流程 一、架构 1.智能信息收集体系 class IntelligentOSINT:def __init__(self, target):self.target targetself.intelligence_sources [OSINT_Platforms,DeepWeb_Crawlers, SocialMedia_Trackers,ML_Correlation_Engine]def advanced_col…...
【Vue中BUG解决】npm error path git
报错内容如下: 从错误信息可知,这是一个 ENOENT(No Entry,即找不到文件或目录)错误,并且与 git 相关。具体来说,npm 在尝试调用 git 时,无法找到 git 可执行文件,下面为…...
GPT-4o微调SFT及强化学习DPO数据集构建
假设,已经标注的训练数据集df包含了提示词、输入和输出三列。 构建微调SFT的数据集代码如下: data [] for x in df.values:prompt x[1]user_content x[2]assistant_content x[3]data.append({"messages": [{"role": "sys…...
element-plus 解决el-dialog背后的页面滚动问题,及其内容有下拉框出现错位问题
这个问题通常是因为 el‑dialog 默认会锁定 body 的滚动(通过给 body 添加隐藏滚动条的样式),从而导致页面在打开对话框时跳转到顶部。解决方法是在使用 el‑dialog 时禁用锁定滚动功能。 <el-dialogv-model"dialogVisible":lo…...
MT6835 21位 磁编码器 SPI 平台无关通用驱动框架 STM32
MT6835 21位 磁编码器 SPI 平台无关通用驱动框架 STM32 1. 获取代码:2. 加入你的项目2.1 以 STM32 为例:2.2 以 ESP-IDF 为例: 3. 对接 API3.1 以 STM32 为例: 4. 更多函数说明5. 写入 EEPROM 示例 MT6835 Framework 纯C语言实现,跨平台&…...
vue REF 和 Reactive区别、特点、优势
REF 和 Reactive 是两种不同的编程范式。下面是它们之间的对比以及各自的优势劣势和特点: REF(可变状态编程): 优势: 易于理解和学习:REF 编程模型更贴近传统的命令式编程,因此对于大多数开发…...
Elastic Cloud Serverless 现已在 Microsoft Azure 上提供技术预览版
作者:来自 Elastic Yuvi Gupta Elastic Cloud Serverless 提供了启动和扩展安全性、可观察性和搜索解决方案的最快方法 — 无需管理基础设施。 今天,我们很高兴地宣布 Microsoft Azure 上的 Elastic Cloud Serverless 技术预览版现已在美国东部地区推出。…...
Spring Boot + MyBatis Field ‘xxx‘ doesn‘t have a default value 问题排查与解决
目录 1. 问题所示2. 原理分析3. 解决方法1. 问题所示 执行代码的时候,出现某个字段无法添加 ### Error updating database. Cause: java.sql.SQLException: Field e_f_id doesnt have a default value ### The error may exist in cn...
kafka的架构和工作原理
目录 Kafka 架构 Kafka 工作原理 Kafka 数据流 Kafka 核心特性 总结 Kafka 架构 1. 生产者(Producer) 2. 消费者(Consumer) 3. 主题(Topic) 4. 分区(Partition) 5. 副本(Replica) 6. 代理(Broker) 7. ZooKeeper(旧版本)/KRaft(新版本) Kafka 工作…...
游戏引擎学习第100天
仓库:https://gitee.com/mrxiao_com/2d_game_2 昨天的回顾 今天的工作重点是继续进行反射计算的实现。昨天,我们开始了反射和环境贴图的工作,成功地根据法线显示了反射效果。然而,我们还没有实现反射向量的计算,导致反射交点的代…...
机器学习:朴素贝叶斯分类器
贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。 贝叶斯定理是贝叶斯决策论的基础,描述了如何根据新的证据更新先验概率,贝叶斯定理&…...
打开Visual Studio Code的时候发现未检测到适用于linux的windows子系统,那么该问题要如何解决?
两个月没有使用vscode编写代码,今天使用的时候发现了以上的问题导致我的vscode无法编写程序,接下来我将本人解决该问题的思路分享给大家。 首先我们要清楚WSL是适用于linux的window的子系统,是一个在Windows 10\11上能够运行原生Linux二进制可…...
力扣24题——两两交换链表中节点
#题目 #代码 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.next next; }* }*/ clas…...
android launcher拖动图标释放错位
由于为了设备流畅把所有动画效果设置为0.5,不设置为0是因为锁屏在开机时会有闪黑屏的现象。在此背景下,测试发现在拖动桌面图标时,在图标动画过程中错位时释放图标,则图标会留在错位的位置,不会自动对齐。 原因就是动…...
window ssh免密码输入
生成本地公钥 打开dos,使用以下命令手动生成一个公钥: ssh-keygen -t rsa Generating public/private rsa key pair. Enter file in which to save the key (C:\Users\aero/.ssh/id_rsa): Enter passphrase (empty for no passphrase): Enter same pas…...
2024年博客之星年度评选—主题文章创作评审文章得分公布
博客之星活动地址:https://www.csdn.net/blogstar2024 创作影响力评审入围名单:https://blogdev.blog.csdn.net/article/details/145189549 目录 主题文章创作评审得分排名 主题文章创作说明 主题文章评选说明 创作影响力评审主题文章创作评审目前排名 博…...
vscode插件Remote - SSH使用教程
Remote - SSH 是一款非常实用的 Visual Studio Code (VSCode) 扩展插件,它允许开发者通过SSH连接到远程服务器,并像在本地一样进行代码编辑和调试。这意味着你可以直接在VS Code中打开位于远程机器上的文件夹,并利用本地安装的VS Code功能,如语法高亮、智能感知、Git集成等…...
自学人工智能大模型,满足7B模型的训练和微调以及推理,预算3万,如何选购电脑
如果你的预算是 3万元人民币,希望训练和微调 7B 参数规模的人工智能大模型(如 LLaMA、Mistral 等),你需要一台高性能的深度学习工作站。在这个预算范围内,以下是推荐的配置: 1. 关键硬件配置 (1) GPU (显卡…...
github不翻墙就可以访问
目录 简介资料准备windows平台设置下载运行git设置firefox设置 ubuntu平台设置下载启动服务设置系统代理git设置firefox设置证书 注意事项 简介 由于github访问不稳定,严重影响了国内软件开发,在网上搜索并验证了一些方法.现在整理出来一个可以正常使用的方法, 在windows和Lin…...
十大知识领域中涉及到的工具与技术(三)
简介 整理下十大知识领域中使用到 “ 数据表现 ” 里面所包含的工具与技术,以及在那些过程中有使用。 具体的一些工具与技术 工具与技术—————————————描述1.亲和图用于对大量创意进行分组的技术。与心智图相似。针对某个问题,产生出可联成…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
