当前位置: 首页 > news >正文

傅里叶公式推导(三)

文章目录

  • 周期 2L
  • 周期T


周期 2L

周期 T = 2 L T=2L T=2L 的傅里叶变换

f ( t ) + f ( t + 2 L ) f(t) + f(t+2L) f(t)+f(t+2L)

xt
2 π \pi π 2 L 2L 2L

原公式
f ( x ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ n x + b n sin ⁡ n x ] a 0 = 1 π ∫ − π π f ( x ) d x a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x \begin{array}{l} f(x) = \frac{a_0}{2} +\sum_{n=1}^{\infty }[a_n\cos{nx} + b_n\sin{nx}] \\ a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\mathrm{d}x \\ a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos{nx}\mathrm{d}x \\ b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin{nx}\mathrm{d}x \end{array} f(x)=2a0+n=1[ancosnx+bnsinnx]a0=π1ππf(x)dxan=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx


t = L π x x = π L t ω = 2 π T = π L t=\frac{L}{\pi}x \\ x=\frac{\pi}{L}t \\ \omega = \frac{2\pi}{T} = \frac{\pi}{L} t=πLxx=Lπtω=T2π=Lπ

换元得,(周期T=2L)
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ n ω t + b n sin ⁡ n ω t ] a 0 = 1 L ∫ − L L f ( t ) d t a n = 1 L ∫ − L L f ( t ) cos ⁡ n ω t d t b n = 1 L ∫ − L L f ( t ) sin ⁡ n ω t d t \begin{array}{l} f(t) = \frac{a_0}{2} +\sum_{n=1}^{\infty }[a_n\cos{n\omega{t}} + b_n\sin{n\omega{t}}] \\ a_0 = \frac{1}{L}\int_{-L}^{L}f(t)\mathrm{d}t \\ a_n = \frac{1}{L}\int_{-L}^{L}f(t)\cos{n\omega{t}}\mathrm{d}t \\ b_n = \frac{1}{L}\int_{-L}^{L}f(t)\sin{n\omega{t}}\mathrm{d}t \end{array} f(t)=2a0+n=1[ancost+bnsint]a0=L1LLf(t)dtan=L1LLf(t)costdtbn=L1LLf(t)sintdt

周期T

统一周期T的写法如下。
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ n ω t + b n sin ⁡ n ω t ] a 0 = 2 T ∫ 0 T f ( t ) d t a n = 2 T ∫ 0 T f ( t ) cos ⁡ n ω t d t b n = 2 T ∫ 0 T f ( t ) sin ⁡ n ω t d t \begin{array}{l} f(t) = \frac{a_0}{2} +\sum_{n=1}^{\infty }[a_n\cos{n\omega{t}} + b_n\sin{n\omega{t}}] \\ a_0 = \frac{2}{T}\int_{0}^{T}f(t)\mathrm{d}t \\ a_n = \frac{2}{T}\int_{0}^{T}f(t)\cos{n\omega{t}}\mathrm{d}t \\ b_n = \frac{2}{T}\int_{0}^{T}f(t)\sin{n\omega{t}}\mathrm{d}t \end{array} f(t)=2a0+n=1[ancost+bnsint]a0=T20Tf(t)dtan=T20Tf(t)costdtbn=T20Tf(t)sintdt


—————— 但行好事莫问前程,你若盛开蝴蝶自来

相关文章:

傅里叶公式推导(三)

文章目录 周期 2L周期T 周期 2L 周期 T 2 L T2L T2L 的傅里叶变换 即 f ( t ) f ( t 2 L ) f(t) f(t2L) f(t)f(t2L) xt2 π \pi π 2 L 2L 2L 原公式 f ( x ) a 0 2 ∑ n 1 ∞ [ a n cos ⁡ n x b n sin ⁡ n x ] a 0 1 π ∫ − π π f ( x ) d x a n 1 π ∫…...

Ubuntu 下 nginx-1.24.0 源码分析 - ngx_time_update函数

定义在 src\core\ngx_times.c 中 ngx_time_init 函数后面 void ngx_time_update(void) {u_char *p0, *p1, *p2, *p3, *p4;ngx_tm_t tm, gmt;time_t sec;ngx_uint_t msec;ngx_time_t *tp;struct timeval tv;if (!ngx_trylock(&ngx…...

老牌系统工具箱,现在还能打!

今天给大家分享一款超实用的电脑软硬件检测工具,虽然它是一款比较“资深”的软件,但依然非常好用,完全能满足我们的日常需求。 电脑软硬件维护检测工具 功能强大易用 这款软件非常贴心,完全不需要安装,直接打开就能用…...

mysql error1449解决方法

MySQL Error 1449 错误信息为 “The user specified as a definer (userhost) does not exist”,意思是定义者(创建存储过程、函数、触发器等数据库对象时指定的用户)在当前系统中不存在,从而导致无法正常使用这些对象。以下是针对…...

Notepad++ 中删除所有以 “pdf“ 结尾的行

Notepad 中删除所有以 “pdf” 结尾的行 操作步骤 1.打开文件: 在 Notepad 中打开你需要处理的文本文件。 2.打开查找和替换对话框: 按快捷键 Ctrl F,打开“查找和替换”对话框。 3.启用正则表达式模式: 在对话框的底部&#xf…...

归并排序 和 七大算法的总结图

目录 什么是递归排序: 图解: 递归方法: 代码实现: 思路分析: 非递归方法: 思路: 代码实现: 思路分析: 什么是递归排序: 先将数据分解成诺干个序列&#xff0…...

嵌入式硬件篇---原码、补码、反码

文章目录 前言简介八进制原码、反码、补码1. 原码规则示例问题 2. 反码规则示例问题 3. 补码规则示例优点 4. 补码的运算5. 总结 十六进制原码、反码、补码1. 十六进制的基本概念2. 十六进制的原码规则示例 3. 十六进制的反码规则示例 4. 十六进制的补码规则示例 5. 十六进制补…...

评估多智能体协作网络(MACNET)的性能:COT和AUTOGPT基线方法

评估多智能体协作网络(MACNET)的性能 方法选择:选择COT(思维链,Chain of Thought)、AUTOGPT等作为基线方法。 COT是一种通过在推理过程中生成中间推理步骤,来增强语言模型推理能力的方法,能让模型更好地处理复杂问题,比如在数学问题求解中,展示解题步骤。 AUTOGPT则是…...

洛谷题目: P2398 GCD SUM 题解 (本题较难,省选-难度)

题目传送门: P2398 GCD SUM - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 前言: 本题涉及到 欧拉函数,素数判断,质数,筛法 ,三大知识点,相对来说还是比较难的。 本题要求我们计算 …...

kubernetes-cni 框架源码分析

深入探索 Kubernetes 网络模型和网络通信 Kubernetes 定义了一种简单、一致的网络模型,基于扁平网络结构的设计,无需将主机端口与网络端口进行映射便可以进行高效地通讯,也无需其他组件进行转发。该模型也使应用程序很容易从虚拟机或者主机物…...

AI Agent有哪些痛点问题

AI Agent有哪些痛点问题 目录 AI Agent有哪些痛点问题AI Agent领域有哪些知名的论文缺乏一个将智能多智能体技术和在真实环境中学习的两个适用流程结合起来的统一框架LLM的代理在量化和客观评估方面存在挑战自主代理在动态环境中学习、推理和驾驭不确定性存在挑战AI Agent领域有…...

使用Java爬虫获取京东JD.item_sku API接口数据

在电商领域,商品的SKU(Stock Keeping Unit)信息是运营和管理的关键数据。SKU信息包括商品的规格、价格、库存等,对于商家的库存管理、定价策略和市场分析至关重要。京东作为国内领先的电商平台,提供了丰富的API接口&am…...

华为云+硅基流动使用Chatbox接入DeepSeek-R1满血版671B

华为云硅基流动使用Chatbox接入DeepSeek-R1满血版671B 硅基流动 1.1 注册登录 1.2 实名认证 1.3 创建API密钥 1.4 客户端工具 OllamaChatboxCherry StudioAnythingLLM 资源包下载: AI聊天本地客户端 接入Chatbox客户端 点击设置 选择SiliconFloW API 粘贴1.3创…...

平方数列与立方数列求和的数学推导

先上结论: 平方数列求和公式为: S 2 ( n ) n ( n 1 ) ( 2 n 1 ) 6 S_2(n) \frac{n(n1)(2n1)}{6} S2​(n)6n(n1)(2n1)​ 立方数列求和公式为: S 3 ( n ) ( n ( n 1 ) 2 ) 2 S_3(n) \left( \frac{n(n1)}{2} \right)^2 S3​(n)(2n(n1)​…...

Java中的synchronized关键字与锁升级机制

在多线程编程中,线程同步是确保程序正确执行的关键。当多个线程同时访问共享资源时,如果不进行同步管理,可能会导致数据不一致的问题。为了避免这些问题,Java 提供了多种同步机制,其中最常见的就是 synchronized 关键字…...

告别传统校准!GNSS模拟器在计量行业的应用

随着GNSS技术的不断进步,各类设备广泛采用该技术实现高精度定位,并推动了其在众多领域的广泛应用。对于关键行业如汽车制造和基础设施,设备的可用性和可靠性被视为基本准则,GNSS作为提供“绝对位置”信息的关键传感器,…...

数据结构结尾

1.二叉树的分类 搜索二叉树,平衡二叉树,红黑树,B树,B树 2.Makefile文件管理 注意: 时间戳:根据时间戳,只编译发生修改后的文件 算法: 算法有如上五个要求。 算法的时间复杂度&am…...

【golang】量化开发学习(一)

均值回归策略简介 均值回归(Mean Reversion)假设价格会围绕均值波动,当价格偏离均值一定程度后,会回归到均值。 基本逻辑: 计算一段时间内的移动均值(如 20 天均线)。当当前价格高于均值一定比…...

AI前端开发:跨领域合作的新引擎

随着人工智能技术的飞速发展,AI代码生成器等工具的出现正深刻地改变着软件开发的模式。 AI前端开发的兴起,不仅提高了开发效率,更重要的是促进了跨领域合作,让数据科学家、UI/UX设计师和前端工程师能够更紧密地协同工作&#xff0…...

数组练习(深入理解、实践数组)

1.练习1&#xff1a;多个字符从两端移动&#xff0c;向中间汇聚 编写代码&#xff0c;演示多个字符从两端移动&#xff0c;向中间汇聚 #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #include<string.h> int main() {//解题思路&#xff1a;//根据题意再…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...