傅里叶公式推导(三)
文章目录
- 周期 2L
- 周期T
周期 2L
周期 T = 2 L T=2L T=2L 的傅里叶变换
即
f ( t ) + f ( t + 2 L ) f(t) + f(t+2L) f(t)+f(t+2L)
x | t |
---|---|
2 π \pi π | 2 L 2L 2L |
原公式
f ( x ) = a 0 2 + ∑ n = 1 ∞ [ a n cos n x + b n sin n x ] a 0 = 1 π ∫ − π π f ( x ) d x a n = 1 π ∫ − π π f ( x ) cos n x d x b n = 1 π ∫ − π π f ( x ) sin n x d x \begin{array}{l} f(x) = \frac{a_0}{2} +\sum_{n=1}^{\infty }[a_n\cos{nx} + b_n\sin{nx}] \\ a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\mathrm{d}x \\ a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos{nx}\mathrm{d}x \\ b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin{nx}\mathrm{d}x \end{array} f(x)=2a0+∑n=1∞[ancosnx+bnsinnx]a0=π1∫−ππf(x)dxan=π1∫−ππf(x)cosnxdxbn=π1∫−ππf(x)sinnxdx
令
t = L π x x = π L t ω = 2 π T = π L t=\frac{L}{\pi}x \\ x=\frac{\pi}{L}t \\ \omega = \frac{2\pi}{T} = \frac{\pi}{L} t=πLxx=Lπtω=T2π=Lπ
换元得,(周期T=2L)
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos n ω t + b n sin n ω t ] a 0 = 1 L ∫ − L L f ( t ) d t a n = 1 L ∫ − L L f ( t ) cos n ω t d t b n = 1 L ∫ − L L f ( t ) sin n ω t d t \begin{array}{l} f(t) = \frac{a_0}{2} +\sum_{n=1}^{\infty }[a_n\cos{n\omega{t}} + b_n\sin{n\omega{t}}] \\ a_0 = \frac{1}{L}\int_{-L}^{L}f(t)\mathrm{d}t \\ a_n = \frac{1}{L}\int_{-L}^{L}f(t)\cos{n\omega{t}}\mathrm{d}t \\ b_n = \frac{1}{L}\int_{-L}^{L}f(t)\sin{n\omega{t}}\mathrm{d}t \end{array} f(t)=2a0+∑n=1∞[ancosnωt+bnsinnωt]a0=L1∫−LLf(t)dtan=L1∫−LLf(t)cosnωtdtbn=L1∫−LLf(t)sinnωtdt
周期T
统一周期T的写法如下。
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos n ω t + b n sin n ω t ] a 0 = 2 T ∫ 0 T f ( t ) d t a n = 2 T ∫ 0 T f ( t ) cos n ω t d t b n = 2 T ∫ 0 T f ( t ) sin n ω t d t \begin{array}{l} f(t) = \frac{a_0}{2} +\sum_{n=1}^{\infty }[a_n\cos{n\omega{t}} + b_n\sin{n\omega{t}}] \\ a_0 = \frac{2}{T}\int_{0}^{T}f(t)\mathrm{d}t \\ a_n = \frac{2}{T}\int_{0}^{T}f(t)\cos{n\omega{t}}\mathrm{d}t \\ b_n = \frac{2}{T}\int_{0}^{T}f(t)\sin{n\omega{t}}\mathrm{d}t \end{array} f(t)=2a0+∑n=1∞[ancosnωt+bnsinnωt]a0=T2∫0Tf(t)dtan=T2∫0Tf(t)cosnωtdtbn=T2∫0Tf(t)sinnωtdt
—————— 但行好事莫问前程,你若盛开蝴蝶自来
相关文章:
傅里叶公式推导(三)
文章目录 周期 2L周期T 周期 2L 周期 T 2 L T2L T2L 的傅里叶变换 即 f ( t ) f ( t 2 L ) f(t) f(t2L) f(t)f(t2L) xt2 π \pi π 2 L 2L 2L 原公式 f ( x ) a 0 2 ∑ n 1 ∞ [ a n cos n x b n sin n x ] a 0 1 π ∫ − π π f ( x ) d x a n 1 π ∫…...
Ubuntu 下 nginx-1.24.0 源码分析 - ngx_time_update函数
定义在 src\core\ngx_times.c 中 ngx_time_init 函数后面 void ngx_time_update(void) {u_char *p0, *p1, *p2, *p3, *p4;ngx_tm_t tm, gmt;time_t sec;ngx_uint_t msec;ngx_time_t *tp;struct timeval tv;if (!ngx_trylock(&ngx…...

老牌系统工具箱,现在还能打!
今天给大家分享一款超实用的电脑软硬件检测工具,虽然它是一款比较“资深”的软件,但依然非常好用,完全能满足我们的日常需求。 电脑软硬件维护检测工具 功能强大易用 这款软件非常贴心,完全不需要安装,直接打开就能用…...
mysql error1449解决方法
MySQL Error 1449 错误信息为 “The user specified as a definer (userhost) does not exist”,意思是定义者(创建存储过程、函数、触发器等数据库对象时指定的用户)在当前系统中不存在,从而导致无法正常使用这些对象。以下是针对…...

Notepad++ 中删除所有以 “pdf“ 结尾的行
Notepad 中删除所有以 “pdf” 结尾的行 操作步骤 1.打开文件: 在 Notepad 中打开你需要处理的文本文件。 2.打开查找和替换对话框: 按快捷键 Ctrl F,打开“查找和替换”对话框。 3.启用正则表达式模式: 在对话框的底部…...

归并排序 和 七大算法的总结图
目录 什么是递归排序: 图解: 递归方法: 代码实现: 思路分析: 非递归方法: 思路: 代码实现: 思路分析: 什么是递归排序: 先将数据分解成诺干个序列࿰…...
嵌入式硬件篇---原码、补码、反码
文章目录 前言简介八进制原码、反码、补码1. 原码规则示例问题 2. 反码规则示例问题 3. 补码规则示例优点 4. 补码的运算5. 总结 十六进制原码、反码、补码1. 十六进制的基本概念2. 十六进制的原码规则示例 3. 十六进制的反码规则示例 4. 十六进制的补码规则示例 5. 十六进制补…...

评估多智能体协作网络(MACNET)的性能:COT和AUTOGPT基线方法
评估多智能体协作网络(MACNET)的性能 方法选择:选择COT(思维链,Chain of Thought)、AUTOGPT等作为基线方法。 COT是一种通过在推理过程中生成中间推理步骤,来增强语言模型推理能力的方法,能让模型更好地处理复杂问题,比如在数学问题求解中,展示解题步骤。 AUTOGPT则是…...
洛谷题目: P2398 GCD SUM 题解 (本题较难,省选-难度)
题目传送门: P2398 GCD SUM - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 前言: 本题涉及到 欧拉函数,素数判断,质数,筛法 ,三大知识点,相对来说还是比较难的。 本题要求我们计算 …...

kubernetes-cni 框架源码分析
深入探索 Kubernetes 网络模型和网络通信 Kubernetes 定义了一种简单、一致的网络模型,基于扁平网络结构的设计,无需将主机端口与网络端口进行映射便可以进行高效地通讯,也无需其他组件进行转发。该模型也使应用程序很容易从虚拟机或者主机物…...
AI Agent有哪些痛点问题
AI Agent有哪些痛点问题 目录 AI Agent有哪些痛点问题AI Agent领域有哪些知名的论文缺乏一个将智能多智能体技术和在真实环境中学习的两个适用流程结合起来的统一框架LLM的代理在量化和客观评估方面存在挑战自主代理在动态环境中学习、推理和驾驭不确定性存在挑战AI Agent领域有…...
使用Java爬虫获取京东JD.item_sku API接口数据
在电商领域,商品的SKU(Stock Keeping Unit)信息是运营和管理的关键数据。SKU信息包括商品的规格、价格、库存等,对于商家的库存管理、定价策略和市场分析至关重要。京东作为国内领先的电商平台,提供了丰富的API接口&am…...

华为云+硅基流动使用Chatbox接入DeepSeek-R1满血版671B
华为云硅基流动使用Chatbox接入DeepSeek-R1满血版671B 硅基流动 1.1 注册登录 1.2 实名认证 1.3 创建API密钥 1.4 客户端工具 OllamaChatboxCherry StudioAnythingLLM 资源包下载: AI聊天本地客户端 接入Chatbox客户端 点击设置 选择SiliconFloW API 粘贴1.3创…...
平方数列与立方数列求和的数学推导
先上结论: 平方数列求和公式为: S 2 ( n ) n ( n 1 ) ( 2 n 1 ) 6 S_2(n) \frac{n(n1)(2n1)}{6} S2(n)6n(n1)(2n1) 立方数列求和公式为: S 3 ( n ) ( n ( n 1 ) 2 ) 2 S_3(n) \left( \frac{n(n1)}{2} \right)^2 S3(n)(2n(n1)…...
Java中的synchronized关键字与锁升级机制
在多线程编程中,线程同步是确保程序正确执行的关键。当多个线程同时访问共享资源时,如果不进行同步管理,可能会导致数据不一致的问题。为了避免这些问题,Java 提供了多种同步机制,其中最常见的就是 synchronized 关键字…...

告别传统校准!GNSS模拟器在计量行业的应用
随着GNSS技术的不断进步,各类设备广泛采用该技术实现高精度定位,并推动了其在众多领域的广泛应用。对于关键行业如汽车制造和基础设施,设备的可用性和可靠性被视为基本准则,GNSS作为提供“绝对位置”信息的关键传感器,…...

数据结构结尾
1.二叉树的分类 搜索二叉树,平衡二叉树,红黑树,B树,B树 2.Makefile文件管理 注意: 时间戳:根据时间戳,只编译发生修改后的文件 算法: 算法有如上五个要求。 算法的时间复杂度&am…...

【golang】量化开发学习(一)
均值回归策略简介 均值回归(Mean Reversion)假设价格会围绕均值波动,当价格偏离均值一定程度后,会回归到均值。 基本逻辑: 计算一段时间内的移动均值(如 20 天均线)。当当前价格高于均值一定比…...

AI前端开发:跨领域合作的新引擎
随着人工智能技术的飞速发展,AI代码生成器等工具的出现正深刻地改变着软件开发的模式。 AI前端开发的兴起,不仅提高了开发效率,更重要的是促进了跨领域合作,让数据科学家、UI/UX设计师和前端工程师能够更紧密地协同工作࿰…...

数组练习(深入理解、实践数组)
1.练习1:多个字符从两端移动,向中间汇聚 编写代码,演示多个字符从两端移动,向中间汇聚 #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #include<string.h> int main() {//解题思路://根据题意再…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...