【MySQL】InnoDB单表访问方法
目录
- 1、背景
- 2、环境
- 3、访问类型
- 【1】const
- 【2】ref
- 【3】ref_or_null
- 【4】range
- 【5】index
- 【6】all
- 4、总结
1、背景
mysql通过查询条件查询到结果的过程就叫访问方法,一条查询语句的访问方法有很多种,接下来我们就来讲一下各种访问方法。
2、环境
创建表:
mysql> CREATE TABLE test2-> (-> id INT AUTO_INCREMENT PRIMARY KEY,-> str1 VARCHAR(255),-> str2 VARCHAR(255),-> str3 CHAR(5),-> str4 VARCHAR(255),-> str5 CHAR(10),-> INDEX idx_str1 (str1),-> UNIQUE INDEX idx_str3 (str3),-> INDEX idx_str4_str5 (str4, str5)-> ) ENGINE = InnoDB DEFAULT CHARSET = utf8;
Query OK, 0 rows affected, 1 warning (0.03 sec)
插入100条数据:
mysql> INSERT INTO test2 (str1, str2, str3, str4, str5) VALUES-> ('value1', 'data1', 'abc', 'value4_1', 'value5_1'),-> ('value2', 'data2', 'def', 'value4_2', 'value5_2'),-> ...-> ('value99', 'data99', 'yz91', 'value4_99', 'value5_99'),-> ('value100', 'data100', 'yz92', 'value4_100', 'value5_100');
Query OK, 100 rows affected (0.02 sec)
Records: 100 Duplicates: 0 Warnings: 0
3、访问类型
【1】const
通过主键索引或者唯一索引查询一条记录的方法就为const,可以通过explain关键字来看查询语句的访问方式,通过主键查询示例:
mysql> explain select * from test2 where id = 3;
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| 1 | SIMPLE | test2 | NULL | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
type字段就是访问方式,我们再看看通过唯一索引查询的示例:
mysql> explain select * from test2 where str3 = 'abc';
+----+-------------+-------+------------+-------+---------------+----------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+----------+---------+-------+------+----------+-------+
| 1 | SIMPLE | test2 | NULL | const | idx_str3 | idx_str3 | 16 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+----------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
【2】ref
使用普通二级索引进行等值匹配时,访问类型就为ref,示例如下:
mysql> explain select * from test2 where str1 = 'value7';
+----+-------------+-------+------------+------+---------------+----------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+----------+---------+-------+------+----------+-------+
| 1 | SIMPLE | test2 | NULL | ref | idx_str1 | idx_str1 | 767 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+----------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.01 sec)
【3】ref_or_null
二级索引进行等值匹配时,又想把值为NULL的查询出来,这种查询类型就为ref_or_null,先把上面插入的数据部分记录的str1字段改为NULL,sql如下:
mysql> update test2 set str1 = NULL where id in (3, 6, 8, 9, 34, 78, 89);
Query OK, 7 rows affected (0.01 sec)
Rows matched: 7 Changed: 7 Warnings: 0
再看查询类型:
mysql> explain select * from test2 where str1 = 'value7' or str1 = null;
+----+-------------+-------+------------+-------------+---------------+----------+---------+-------+------+----------+--------
---------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra|
+----+-------------+-------+------------+-------------+---------------+----------+---------+-------+------+----------+--------
---------------+
| 1 | SIMPLE | test2 | NULL | ref_or_null | idx_str1 | idx_str1 | 768 | const | 2 | 100.00 | Using i
ndex condition |
+----+-------------+-------+------------+-------------+---------------+----------+---------+-------+------+----------+--------
---------------+
1 row in set, 1 warning (0.00 sec)
【4】range
顾名思义范围查询就是range,示例如下:
mysql> explain select * from test2 where id > 2 and id < 7;
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| 1 | SIMPLE | test2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 4 | 100.00 | Using where |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
【5】index
使用组合索引中非最左边作为查询条件时,并且查询的字段不需要回表,这个时候就会将组合索引叶子节点全部扫描一遍,这种查询方式就叫index,示例如下:
mysql> explain select str4, str5 from test2 where str5 = 'value5_15';
+----+-------------+-------+------------+-------+---------------+---------------+---------+------+------+----------+----------
----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra|
+----+-------------+-------+------------+-------+---------------+---------------+---------+------+------+----------+----------
----------------+
| 1 | SIMPLE | test2 | NULL | index | idx_str4_str5 | idx_str4_str5 | 799 | NULL | 100 | 10.00 | Using whe
re; Using index |
+----+-------------+-------+------------+-------+---------------+---------------+---------+------+------+----------+----------
----------------+
1 row in set, 1 warning (0.00 sec)
【6】all
对主键索引所在的叶子节点进行全表扫描就叫all,示例如下:
mysql> explain select * from test2;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| 1 | SIMPLE | test2 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
4、总结
mysql中优化器会将我们的查询条件进行优化,我们可以通过explain关键字来查看单表查询的访问方式。
相关文章:
【MySQL】InnoDB单表访问方法
目录 1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】all 4、总结 1、背景 mysql通过查询条件查询到结果的过程就叫访问方法,一条查询语句的访问方法有很多种,接下来我们就来讲一下各种访问方法。 2、环境 创…...
APP端网络测试与弱网模拟!
当前APP网络环境比较复杂,网络制式有2G、3G、4G网络,还有越来越多的公共Wi-Fi。不同的网络环境和网络制式的差异,都会对用户使用app造成一定影响。另外,当前app使用场景多变,如进地铁、上公交、进电梯等,使…...
【个人开发】deepseed+Llama-factory 本地数据多卡Lora微调
文章目录 1.背景2.微调方式2.1 关键环境版本信息2.2 步骤2.2.1 下载llama-factory2.2.2 准备数据集2.2.3 微调模式2.2.4 微调脚本 2.3 踩坑经验2.3.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.2.3.2 问题二: ValueError: Target…...
Redis7.0八种数据结构底层原理
导读 本文介绍redis应用数据结构与物理存储结构,共八种应用数据结构和 一. 内部数据结构 1. sds sds是redis自己设计的字符串结构有以下特点: jemalloc内存管理预分配冗余空间二进制安全(c原生使用\0作为结尾标识,所以无法直接存储\0)动态计数类型(根据字符串长度动态选择…...
Kafka 高吞吐量的底层技术原理
Kafka 之所以能够实现高吞吐量(每秒百万级消息处理),主要依赖于其底层设计和多项优化技术。以下是 Kafka 实现高吞吐量的关键技术原理: 1. 顺序读写磁盘 Kafka 利用磁盘的顺序读写特性,避免了随机读写的性能瓶颈。 顺…...
CCFCSP第34次认证第一题——矩阵重塑(其一)
第34次认证第一题——矩阵重塑(其一) 官网链接 时间限制: 1.0 秒 空间限制: 512 MiB 相关文件: 题目目录(样例文件) 题目背景 矩阵(二维)的重塑(reshap…...
网络工程师 (35)以太网通道
一、概念与原理 以太网通道,也称为以太端口捆绑、端口聚集或以太链路聚集,是一种将多个物理以太网端口组合成一个逻辑通道的技术。这一技术使得多个端口能够并行工作,共同承担数据传输任务,从而提高了网络的传输能力和可靠性。 二…...
O1、R1和V3模型
O1、R1和V3模型分别是不同团队或公司开发的人工智能模型,它们在定位、能力和应用场景上存在显著区别。以下是它们的详细对比: 1. 模型归属 O1模型:由OpenAI开发,属于其高性能推理模型系列。 R1和V3模型:由DeepSeek&a…...
Linux 安装 Ollama
1、下载地址 Download Ollama on Linux 2、有网络直接执行 curl -fsSL https://ollama.com/install.sh | sh 命令 3、下载慢的解决方法 1、curl -fsSL https://ollama.com/install.sh -o ollama_install.sh 2、sed -i s|https://ollama.com/download/ollama-linux|https://…...
docker配置国内源
配置Docker使用国内源(也称为镜像加速器)可以显著提高拉取Docker镜像的速度,特别是在中国地区。以下是如何配置Docker使用国内源的步骤: 1. 修改Docker配置文件 Docker的配置文件通常位于/etc/docker/daemon.json。如果该文件不…...
【leetcode】关于循环数组的深入分析
原题:https://leetcode.cn/problems/rotate-array/description/ 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1…...
DeepSeek 指导手册(入门到精通)
第⼀章:准备篇(三分钟上手)1.1 三分钟创建你的 AI 伙伴1.2 认识你的 AI 控制台 第二章:基础对话篇(像交朋友⼀样学交流)2.1 有效提问的五个黄金法则2.2 新手必学魔法指令 第三章:效率飞跃篇&…...
【力扣题解】【76. 最小覆盖子串】容易理解版
76. 最小覆盖子串 总结和复盘 这是时隔1年4个月之后,再次写的题解,比第一次要清晰很多。 我刚开始,就是用方法一做的,提交之后报超出内存限制; 对方法一进行优化,得到方法二,提交之后就AC了。…...
Android10 音频参数导出合并
A10 设备录音时底噪过大,让音频同事校准了下,然后把校准好的参数需要导出来,集成到项目中,然后出包,导出方式在此记录 设备安装debug系统版本调试好后, adb root adb remount adb shell 进入设备目录 导…...
在 Windows 系统中如何快速进入安全模式的两种方法
在使用电脑的过程中,有时我们可能会遇到一些需要进入“安全模式”来解决的问题。安全模式是一种特殊的启动选项,它以最小化配置启动操作系统,仅加载最基本的驱动程序和服务,从而帮助用户诊断和修复系统问题。本文中简鹿办公将详细…...
计算机网络(1)基础篇
目录 1.TCP/IP 网络模型 2.键入网址--->网页显示 2.1 生成HTTP数据包 2.2 DNS服务器进行域名与IP转换 2.3 建立TCP连接 2.4 生成IP头部和MAC头部 2.5 网卡、交换机、路由器 3 Linux系统收发网络包 1.TCP/IP 网络模型 首先,为什么要有 TCP/IP 网络模型&a…...
自然语言处理NLP入门 -- 第四节文本分类
目标 本章的目标是帮助你理解文本分类的基本概念,并通过具体示例学习如何使用 scikit-learn 训练文本分类模型,以及如何利用 OpenAI API 进行文本分类。 5.1 什么是文本分类? 文本分类(Text Classification)是自然语…...
【redis】数据类型之bitmaps
Redis的Bitmaps是一种基于字符串的数据结构,用于处理位级别的操作。虽然Bitmaps在Redis中并不是一种独立的数据类型,而是基于字符串实现的,但它们提供了高效的位操作功能,适用于需要处理大量布尔值或二进制数据的场景。 基本概念…...
计算机网络-MPLS转发原理
在上一篇关于 MPLS 基础的文章中,我们了解了 MPLS 的基本概念、术语以及它在网络中的重要性。今天,我们将深入探讨 MPLS 转发的原理与流程,帮助大家更好地理解 MPLS 是如何在实际网络中工作的。 一、MPLS 转发概述 MPLS 转发的本质是将数据…...
5. 【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--微服务基础工具与技术--Nacos
一、什么是Nacos Nacos 是阿里巴巴开源的一款云原生应用基础设施,它旨在简化微服务架构中服务治理和配置管理的复杂性。通过 Nacos,服务在启动时可以自动注册,而其他服务则可以通过名称来查找并访问这些注册好的实例。同时,Nacos…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
