Python Pandas(11):Pandas 数据可视化
数据可视化是数据分析中的重要环节,它帮助我们更好地理解和解释数据的模式、趋势和关系。通过图形、图表等形式,数据可视化将复杂的数字和统计信息转化为易于理解的图像,从而便于做出决策。Pandas 提供了与 Matplotlib 和 Seaborn 等可视化库的集成,使得数据的可视化变得简单而高效。在 Pandas 中,数据可视化功能主要通过 DataFrame.plot()
和 Series.plot()
方法实现,这些方法实际上是对 Matplotlib 库的封装,简化了图表的绘制过程。
图表类型 | 描述 | 方法 |
---|---|---|
折线图 | 展示数据随时间或其他连续变量的变化趋势 | df.plot(kind='line') |
柱状图 | 比较不同类别的数据 | df.plot(kind='bar') |
水平柱状图 | 比较不同类别的数据,但柱子水平排列 | df.plot(kind='barh') |
直方图 | 显示数据的分布 | df.plot(kind='hist') |
散点图 | 展示两个数值型变量之间的关系 | df.plot(kind='scatter', x='col1', y='col2') |
箱线图 | 显示数据分布,包括中位数、四分位数等 | df.plot(kind='box') |
密度图 | 展示数据的密度分布 | df.plot(kind='kde') |
饼图 | 显示不同部分在整体中的占比 | df.plot(kind='pie') |
区域图 | 展示数据的累计数值 | df.plot(kind='area') |
1 Pandas 数据可视化概述
Pandas 提供的 plot()
方法可以轻松地绘制不同类型的图表,包括折线图、柱状图、直方图、散点图等。plot()
方法有很多参数,可以定制图表的样式、颜色、标签等。
1.1 基本的 plot()
方法
参数 | 说明 |
---|---|
kind | 图表类型,支持 'line' , 'bar' , 'barh' , 'hist' , 'box' , 'kde' , 'density' , 'area' , 'pie' 等类型 |
x | 设置 x 轴的数据列 |
y | 设置 y 轴的数据列 |
title | 图表的标题 |
xlabel | x 轴的标签 |
ylabel | y 轴的标签 |
color | 设置图表的颜色 |
figsize | 设置图表的大小(宽, 高) |
legend | 是否显示图例 |
1.2 常用图表类型
图表类型 | 描述 | 常用用法 |
---|---|---|
折线图 | 用于显示随时间变化的数据趋势 | df.plot(kind='line') |
柱状图 | 用于显示类别之间的比较数据 | df.plot(kind='bar') |
水平柱状图 | 与柱状图类似,但柱子是水平的 | df.plot(kind='barh') |
直方图 | 用于显示数据的分布(频率分布) | df.plot(kind='hist') |
散点图 | 用于显示两个数值变量之间的关系 | df.plot(kind='scatter', x='col1', y='col2') |
箱线图 | 用于显示数据的分布、异常值及四分位数 | df.plot(kind='box') |
密度图 | 用于显示数据的密度分布 | df.plot(kind='kde') |
饼图 | 用于显示各部分占总体的比例 | df.plot(kind='pie') |
区域图 | 用于显示累计数值的图表(类似于折线图,但填充了颜色) | df.plot(kind='area') |
2 数据可视化示例
2.1 折线图 (Line Plot)
折线图通常用于展示数据随时间的变化趋势。
import pandas as pd
import matplotlib.pyplot as plt# 示例数据
data = {'Year': [2015, 2016, 2017, 2018, 2019, 2020],'Sales': [100, 150, 200, 250, 300, 350]}
df = pd.DataFrame(data)# 绘制折线图
df.plot(kind='line', x='Year', y='Sales', title='Sales Over Years', xlabel='Year', ylabel='Sales', figsize=(10, 6))
plt.show()
2.2 柱状图 (Bar Chart)
柱状图用于展示不同类别之间的比较,尤其适用于离散数据。
import pandas as pd
import matplotlib.pyplot as plt# 示例数据
data = {'Category': ['A', 'B', 'C', 'D'],'Value': [10, 15, 7, 12]}
df = pd.DataFrame(data)# 绘制柱状图
df.plot(kind='bar', x='Category', y='Value', title='Category Values', xlabel='Category', ylabel='Value', figsize=(8, 5))
plt.show()
2.3 散点图 (Scatter Plot)
散点图用于展示两个数值变量之间的关系。
import pandas as pd
import matplotlib.pyplot as plt# 示例数据
data = {'Height': [150, 160, 170, 180, 190],'Weight': [50, 60, 70, 80, 90]}
df = pd.DataFrame(data)# 绘制散点图
df.plot(kind='scatter', x='Height', y='Weight', title='Height vs Weight', xlabel='Height (cm)', ylabel='Weight (kg)',figsize=(8, 5))
plt.show()
2.4 直方图 (Histogram)
直方图用于显示数据的分布,特别是用于描述数据的频率分布。
import pandas as pd
import matplotlib.pyplot as plt# 示例数据
data = {'Scores': [55, 70, 85, 90, 60, 75, 80, 95, 100, 65]}
df = pd.DataFrame(data)# 绘制直方图
df.plot(kind='hist', y='Scores', bins=5, title='Scores Distribution', xlabel='Scores', figsize=(8, 5))
plt.show()
2.5 箱线图 (Box Plot)
箱线图用于展示数据的分布情况,包括中位数、四分位数以及异常值。
import pandas as pd
import matplotlib.pyplot as plt# 示例数据
data = {'Scores': [55, 70, 85, 90, 60, 75, 80, 95, 100, 65]}
df = pd.DataFrame(data)# 绘制箱线图
df.plot(kind='box', title='Scores Boxplot', ylabel='Scores', figsize=(8, 5))
plt.show()
2.6 饼图 (Pie Chart)
饼图用于展示各部分占总体的比例。
import pandas as pd
import matplotlib.pyplot as plt# 示例数据
data = {'Category': ['A', 'B', 'C', 'D'],'Value': [10, 15, 7, 12]}
df = pd.DataFrame(data)# 绘制饼图
df.plot(kind='pie', y='Value', labels=df['Category'], autopct='%1.1f%%', title='Category Proportions', figsize=(8, 5))
plt.show()
3 Seaborn 可视化
Seaborn 是基于 Matplotlib 的高级数据可视化库,提供了更漂亮、更易用的图表和更丰富的统计图表类型。在 Pandas 中,可以直接与 Seaborn 配合使用。
3.1 热力图(Heatmap)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 示例数据
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)# 绘制热力图
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.show()
3.2 散点图矩阵
数据集中所有数值特征之间的散点图矩阵:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 示例数据
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)sns.pairplot(df)
plt.show()
4 Matplotlib 高级自定义
除了使用 Pandas 提供的 plot()
方法外,Matplotlib 还可以提供更灵活的自定义功能,例如添加标题、标签、设置图表风格、调整坐标轴等。
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 示例数据
data = {'Year': [2015, 2016, 2017, 2018, 2019],'Sales': [100, 150, 200, 250, 300]}
df = pd.DataFrame(data)# 绘制折线图
plt.plot(df['Year'], df['Sales'], color='blue', marker='o')# 自定义
plt.title('Sales Over Years')
plt.xlabel('Year')
plt.ylabel('Sales')
plt.grid(True)# 显示
plt.show()
相关文章:

Python Pandas(11):Pandas 数据可视化
数据可视化是数据分析中的重要环节,它帮助我们更好地理解和解释数据的模式、趋势和关系。通过图形、图表等形式,数据可视化将复杂的数字和统计信息转化为易于理解的图像,从而便于做出决策。Pandas 提供了与 Matplotlib 和 Seaborn 等可视化库…...
【练习】图论
F. Friendly Group 图中选择一个点-1 边两端点都选择1 边一个端点选择-1 添加链接描述 #include<iostream> using namespace std; #include<vector> #include<cstring> const int N300010; int n,m; vector<int> G[N]; int temp1,temp2; bool vis[N…...

【RAG落地利器】Weaviate、Milvus、Qdrant 和 Chroma 向量数据库对比
什么是向量数据库? 向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到数千不等。 向量通常是通过对原始数据(如文本、图像、音频、视频等)…...
今日AI和商界事件(2025-02-14)
今日AI大事件主要包括以下几个方面: 一、苹果新品预告 事件概述:苹果CEO蒂姆库克在社交媒体发布7秒视频,配文“准备好迎接家庭的新成员”,并宣布2月19日将有新品发布。知名科技记者马克古尔曼称,新款低端iPhone SE将…...
【大语言模型】最新ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用
ChatGPT、DeepSeek等大语言模型助力科研应用 随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数…...

spring6(完结)
像是八大模式这种,放在后面八股文中再重点了解,对于源码部分也是后面会一起手敲。 个人觉得spring的重点在于注解开发,省去了很多耦合的问题,像是各种事务的管理,和bean类的管理都可以给spring容器管理,注入…...
Kubernetes (k8s) 常用指令速查表
以下是一份 Kubernetes (k8s) 常用指令速查表,涵盖集群管理、资源操作、故障排查等场景,适合日常运维和开发使用: 1. 集群与节点管理 命令说明kubectl cluster-info查看集群基本信息kubectl get nodes查看所有节点状态kubectl describe node…...
DeepSeek教unity------MessagePack-05
动态反序列化 当调用 MessagePackSerializer.Deserialize<object> 或 MessagePackSerializer.Deserialize<dynamic> 时,二进制数据中存在的任何值都将被转换为基本值,即 bool、char、sbyte、byte、short、int、long、ushort、uint、ulong、…...
Kotlin 优雅的接口实现
1. 日常遇到的冗余的接口方法实现 日常开发中,经常会要实现接口,但是很多场景中,只需要用到其中一两个方法,例如 ActivityLifecycleCallbacks,它有很多个接口需要实现,但是很多时候我们只需要用到其中的一…...
新的面试题CSS
解释CSS Hack 一般来说是针对不同的浏览器写不同的CSS,就是 CSS Hack。 IE浏览器Hack一般又分为三种,条件Hack、属性级Hack、选择符Hack(详细参考CSS文档:css文档)。例如: // 1、条件Hack <!--[if IE]> <sty…...

DeepSeek R1打造本地化RAG知识库
本文将详细介绍如何使用Ollama、Deepseek R1大语音模型、Nomic-Embed-Text向量模型和AnythingLLM共同搭建一个本地的私有RAG知识库。 一. 准备工作 什么是RAG? RAG是一种结合了信息检索和大模型(LLM)的技术,在对抗大模型幻觉、…...

聚铭网络入围2025年度江苏省政府采购信息安全设备协议供货名单
近日,2025年度江苏省党政机关、事业单位及团体组织信息安全设备框架协议采购项目入围结果公布。聚铭网络凭借自身专业实力和技术优势脱颖而出,成功入围22个分包。 此次采购项目是江苏省政府采购领域级别最高、覆盖面最广的项目之一。从资格评选到后期材料…...

基于Flask的影视剧热度数据可视化分析系统的设计与实现
【FLask】基于Flask的影视剧热度数据可视化分析系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 随着互联网技术的飞速发展,影视剧行业的数据量呈爆炸性增长&#x…...

【弹性计算】弹性计算的技术架构
弹性计算的技术架构 1.工作原理2.总体架构3.控制面4.数据面5.物理设施层 虽然弹性计算的产品种类越来越多,但不同产品的技术架构大同小异。下面以当前最主流的产品形态 —— 云服务器为例,探查其背后的技术秘密。 1.工作原理 云服务器通常以虚拟机的方…...

python-leetcode 31.K个一组翻转链表
题目: 给定链表的头节点head,每K个节点一组进行翻转,返回修改后的链表。 K是正整数,它的值小于等于链表的长度,如果节点总数不是K的整数组,那么将最后剩余的节点保持原有顺序。不能只改变节点内容的值,需…...
算法08-递归调用转为循环的通用方法
前导:问题引入 在Python中,递归调用过多会导致“递归深度过深”的错误,通常是因为递归没有正确终止条件或者递归层次太深。 这种错误通常会导致程序抛出 RecursionError 异常。 Python默认的递归深度限制大约是1000层(可以通过sys.getrecursionlimit()查看)。 修正方式…...

[创业之路-300]:进一步理解货币与金钱, 货币与货币政策
目录 一、货币 1.1 概述 1、货币的定义 2、货币的形态演变 3、货币的职能 4、货币的价值衡量 1.2 货币的分层 1、货币分层的目的与意义 2、货币分层的划分标准与层次 3、各国货币分层的实践 4、货币分层的影响与应用 1.3、M0、M1、M2变化对股市的影响 1、M0变化对…...

达梦:跟踪日志诊断
目录标题 参考连接**性能诊断:跟踪日志诊断****总结** 参考连接 性能诊断 -> 跟踪日志诊断 性能诊断:跟踪日志诊断 备份现有的日志配置文件 在修改文件之前,建议先备份原始文件,以防万一需要恢复。 cp /opt/dmdbms/dmdata/DA…...

Qwen2-VL 的重大省级,Qwen 发布新旗舰视觉语言模型 Qwen2.5-VL
Qwen2.5-VL 是 Qwen 的新旗舰视觉语言模型,也是上一代 Qwen2-VL 的重大飞跃。 Qwen2.5-VL主要特点 视觉理解事物:Qwen2.5-VL不仅能够熟练识别花、鸟、鱼、昆虫等常见物体,而且还能够分析图像中的文本、图表、图标、图形和布局。 代理性&…...
js考核第三题
题三:随机点名 要求: 分为上下两个部分,上方为显示区域,下方为控制区域。显示区域显示五十位群成员的学号和姓名,控制区域由开始和结束两个按钮 组成。点击开始按钮,显示区域里的内容开始滚动,…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...