秘密信息嵌入到RGB通道的方式:分段嵌or完整嵌入各通道
目录
1. 将秘密信息分为三部分的理由
(1)均匀分布负载
(2)提高鲁棒性
(3)容量分配
2. 不将秘密信息分为三部分的情况
(1)嵌入容量
(2)视觉质量
(3)鲁棒性
3. 如何选择
4. 代码实现
(1)将秘密信息分为三部分
(2)将相同的秘密信息嵌入到三个通道
5. 总结
1. 将秘密信息分为三部分的理由
将秘密信息分为三部分,分别嵌入到 R、G、B 三个通道中,主要是基于以下考虑:
(1)均匀分布负载
-
如果将秘密信息均匀分配到三个通道中,每个通道的负载会减少,从而降低对单个通道的影响。
-
这有助于保持图像的视觉质量,因为每个通道的修改量较小。
(2)提高鲁棒性
-
如果某个通道在传输或处理过程中受到干扰(例如压缩、噪声等),其他通道仍然可以保留部分秘密信息。
-
这种分布方式可以提高整体系统的鲁棒性。
(3)容量分配
-
如果秘密信息较长,分配到三个通道中可以更好地利用图像的嵌入容量。
2. 不将秘密信息分为三部分的情况
如果你选择将相同的秘密信息嵌入到 R、G、B 三个通道中,也是可行的,但需要注意以下几点:
(1)嵌入容量
-
每个通道都嵌入相同的秘密信息,相当于将嵌入容量增加了三倍。
-
但这种方式可能会浪费容量,因为三个通道中存储的是相同的信息。
(2)视觉质量
-
在三个通道中嵌入相同的信息,可能会导致图像的视觉质量下降更明显,因为每个通道都被修改了。
(3)鲁棒性
-
如果某个通道受到干扰,其他通道中仍然保留了相同的信息,这可以提高鲁棒性。
-
但这种方式也可能增加被检测到的风险,因为三个通道的修改模式相同。
3. 如何选择
选择是否将秘密信息分为三部分,取决于你的具体需求:
-
如果需要更高的嵌入容量:可以将秘密信息分为三部分,分别嵌入到 R、G、B 通道中。
-
如果需要更高的鲁棒性:可以将相同的秘密信息嵌入到 R、G、B 通道中。
-
如果对视觉质量要求较高:建议将秘密信息分为三部分,均匀分布到三个通道中。
4. 代码实现
以下是两种方式的代码实现示例:
(1)将秘密信息分为三部分
% 将秘密信息分为三部分
msg_r = msg(1:floor(msg_length/3)); % R 通道
msg_g = msg(floor(msg_length/3)+1:floor(2*msg_length/3)); % G 通道
msg_b = msg(floor(2*msg_length/3)+1:end); % B 通道% 对每个通道进行嵌入(embed是自己的嵌入函数)
[r_stego, ~] = embed(r_channel, msg_r, m); % 嵌入到 R 通道
[g_stego, ~] = embed(g_channel, msg_g, m); % 嵌入到 G 通道
[b_stego, ~] = embed(b_channel, msg_b, m); % 嵌入到 B 通道% 合并通道
stego_rgb = cat(3, r_stego, g_stego, b_stego);
(2)将相同的秘密信息嵌入到三个通道
% 将相同的秘密信息嵌入到 R、G、B 通道
[r_stego, ~] = embed(r_channel, msg, m); % 嵌入到 R 通道
[g_stego, ~] = embed(g_channel, msg, m); % 嵌入到 G 通道
[b_stego, ~] = embed(b_channel, msg, m); % 嵌入到 B 通道% 合并通道
stego_rgb = cat(3, r_stego, g_stego, b_stego);
5. 总结
-
分为三部分:适合需要均匀分布负载、提高鲁棒性或嵌入容量较大的场景。
-
嵌入相同信息:适合需要提高鲁棒性、且对嵌入容量要求不高的场景。
相关文章:
秘密信息嵌入到RGB通道的方式:分段嵌or完整嵌入各通道
目录 1. 将秘密信息分为三部分的理由 (1)均匀分布负载 (2)提高鲁棒性 (3)容量分配 2. 不将秘密信息分为三部分的情况 (1)嵌入容量 (2)视觉质量 &#…...
Ai人工智能的未来:趋势、挑战与机遇
Ai人工智能的未来:趋势、挑战与机遇 引言 人工智能(AI)已经成为当代科技发展的核心驱动力,其影响力渗透到各个行业,并塑造了我们未来的社会结构。无论是在医疗、金融、制造业,还是在自动驾驶、智能客服、…...
理解WebGPU 中的 GPUDevice :与 GPU 交互的核心接口
在 WebGPU 开发中, GPUDevice 是一个至关重要的对象,它是与 GPU 进行交互的核心接口。通过 GPUDevice ,开发者可以创建和管理 GPU 资源(如缓冲区、纹理、管线等),并提交命令缓冲区以执行渲染和计算任…...
Java 设计模式之桥接模式
文章目录 Java 设计模式之桥接模式概述UML代码实现 Java 设计模式之桥接模式 概述 桥接模式(Bridge):将抽象部分与它的实现部分分离,使它们都可以独立地变化。通过桥接模式,可以避免类爆炸问题,并提高系统的可扩展性。 UML 核心…...
机器学习(李宏毅)——GAN
一、前言 本文章作为学习2023年《李宏毅机器学习课程》的笔记,感谢台湾大学李宏毅教授的课程,respect!!! 不得不说GAN真是博大精深! 二、大纲 GAN问世基本思想原理剖析Tips of GANGAN的应用Cycle GANEva…...
QT无弹窗运行和只允许运行一个exe
最近做一个小功能,需要后台运行QT程序,无弹窗,并且只允许一个exe运行,不关闭程序,无法2次启动。 main.cpp #include "deleteshotcurveflie.h" #include <QApplication> #include <QSharedMemory&…...
C++ STL 容器
C 的 STL(Standard Template Library) 提供了多种容器,分为以下几类: 序列容器(Sequence Containers)关联容器(Associative Containers)无序关联容器(Unordered Associa…...
开源赋能,智造未来:Odoo+工业物联网,解锁智能工厂新范式——以真实案例解读制造业数字化转型的降本增效密码
工业物联网的机遇与挑战:为什么企业需要Odoo? 《中国智能制造发展研究报告2023》指出,85%的制造企业已启动数字化转型,但超60%面临“数据孤岛、系统割裂、成本高企”的痛点[1]。传统ERP系统难以实时对接产线设备,而定…...
CTF-WEB: 利用iframe标签利用xss,waf过滤后再转换漏洞-- N1ctf Junior display
核心逻辑 // 获取 URL 查询参数的值 function getQueryParam(param) { // 使用 URLSearchParams 从 URL 查询字符串中提取参数 const urlParams new URLSearchParams(window.location.search); // 返回查询参数的值 return urlParams.get(param); } // 使用 DOMPuri…...
K8s组件
一、Kubernetes 集群架构组件 K8S 是属于主从设备模型(Master-Slave 架构),即有 Master 节点负责集群的调度、管理和运维,Slave 节点是集群中的运算工作负载节点。 主节点一般被称为 Master 节点,master节点上有 apis…...
python面试题
以下是一些Python面试题: 一、基础语法 Python中的列表(list)和元组(tuple)有什么区别? 答案: 可变性:列表是可变的,可以修改列表中的元素、添加或删除元素;元组是不可变的,一旦创建就不能修改。语法:列表使用方括号[]定义,元组使用圆括号()定义(单个元素的元组…...
AOS安装及操作演示
文章目录 一、安装node1.1 在 macOS 上管理 Node版本1.1.1 安装 nvm1.1.2 验证 nvm 是否安装成功1.1.3 使用 nvm 安装/切换 Node.js 版本1.1.4 卸载 Node.js 版本 1.2 在 windows 上管理 Node版本1.2.1 安装 nvm-windows1.2.2 安装 Node.js 版本1.2.3 切换 Node.js 版本1.2.4 卸…...
蓝桥杯单片机组第十三届初赛试题-程序题(第2批)
题目到官网看即可,有点久了有些细节记不清了,可能以前发的帖子解释详细一点。 这是我单片机初学的时候写的,像代码结构什么的肯定有可以提升的地方,多多包涵,将就看一下。 i2c文件使用官方的,pcf8591函数…...
企业级高可用 Kubernetes 实践:基于青云 LB 搭建容灾与负载均衡集群全攻略
一、前言 在企业生产环境,k8s高可用是一个必不可少的特性,其中最通用的场景就是如何在 k8s 集群宕机一个节点的情况下保障服务依旧可用。部署高可用k8s集群对于企业级云平台来说是一个根本性的原则,容错、服务可用和数据安全是高可用基础设施的关键。本文是在青云上利用青云…...
Python Pandas(11):Pandas 数据可视化
数据可视化是数据分析中的重要环节,它帮助我们更好地理解和解释数据的模式、趋势和关系。通过图形、图表等形式,数据可视化将复杂的数字和统计信息转化为易于理解的图像,从而便于做出决策。Pandas 提供了与 Matplotlib 和 Seaborn 等可视化库…...
【练习】图论
F. Friendly Group 图中选择一个点-1 边两端点都选择1 边一个端点选择-1 添加链接描述 #include<iostream> using namespace std; #include<vector> #include<cstring> const int N300010; int n,m; vector<int> G[N]; int temp1,temp2; bool vis[N…...
【RAG落地利器】Weaviate、Milvus、Qdrant 和 Chroma 向量数据库对比
什么是向量数据库? 向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到数千不等。 向量通常是通过对原始数据(如文本、图像、音频、视频等)…...
今日AI和商界事件(2025-02-14)
今日AI大事件主要包括以下几个方面: 一、苹果新品预告 事件概述:苹果CEO蒂姆库克在社交媒体发布7秒视频,配文“准备好迎接家庭的新成员”,并宣布2月19日将有新品发布。知名科技记者马克古尔曼称,新款低端iPhone SE将…...
【大语言模型】最新ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用
ChatGPT、DeepSeek等大语言模型助力科研应用 随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数…...
spring6(完结)
像是八大模式这种,放在后面八股文中再重点了解,对于源码部分也是后面会一起手敲。 个人觉得spring的重点在于注解开发,省去了很多耦合的问题,像是各种事务的管理,和bean类的管理都可以给spring容器管理,注入…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
