【git-hub项目:YOLOs-CPP】本地实现03:跑自己的实例分割模型
本节博客,我们继续讲解,如何在cpu+windows上,跑通自己的实例分割模型。
目录
模型
类别名称
量化
导出模型
拉取最新代码
进入官网ultralytics
模型
该项目包括存储在 models
和 quantized_models
目录中的各种预训练标准 YOLO 模型:
模型类型 | 模型名称 |
---|---|
标准模型 | yolo5-n6.onnx |
yolo7-tiny.onnx | |
yolo8n.onnx | |
yolo8n-seg.onnx | |
yolo10n.onnx | |
yolo11n.onnx | |
yolo11n-seg.onnx | |
量化模型 | yolo5-n6_uint8.onnx |
yolo7-tiny-uint8.onnx | |
yolo8n_uint8.onnx | |
yolo8n-seg_uint8.onnx | |
yolo10n_uint8.onnx | |
yolo11n_uint8.onnx | |
yolo11n-seg_uint8.onnx |
你也可以使用带有自定义类别的自定义 YOLO 版本!
比如,我们用ultralytics训练好的实例分割模型best.pt,我们再用原生的ultralytics转onnx方式,转为best.onnx。如下:
类别名称
-
coco.names:包含模型所使用的类别标签列表。
这里,我们也要修改coco.names,改为自己的标签!
量化
quantized_models
目录中包含针对低精度推理优化的 YOLO 模型的量化版本。此外,quantized_models/yolos_quantization.py
脚本可用于对自定义 YOLO 模型进行自定义量化。
注意:量化模型具有模型体积更小的优势,并且在准确性略有下降的情况下,可能实现更快的推理速度。
我们先不量化试一下:
修改源码:
然后,点击重新生成!
并且,运行exe,但是,你会发现,没有出结果。
怎么办呢?我们查看项目源码,发现,后来支持了seg:
但是,源码还是det【目标检测】。
因此,我们将源码从原始代码:
/*** @file image_inference.cpp* @brief Object detection in a static image using YOLO models (v5, v7, v8, v10).* * This file implements an object detection application that utilizes YOLO * (You Only Look Once) models, specifically versions 5, 7, 8, and 10. * The application loads a specified image, processes it to detect objects, * and displays the results with bounding boxes around detected objects.** The application supports the following functionality:* - Loading a specified image from disk.* - Initializing the YOLO detector with the desired model and labels.* - Detecting objects within the image.* - Drawing bounding boxes around detected objects and displaying the result.** Configuration parameters can be adjusted to suit specific requirements:* - `isGPU`: Set to true to enable GPU processing for improved performance; * set to false for CPU processing.* - `labelsPath`: Path to the class labels file (e.g., COCO dataset
相关文章:

【git-hub项目:YOLOs-CPP】本地实现03:跑自己的实例分割模型
本节博客,我们继续讲解,如何在cpu+windows上,跑通自己的实例分割模型。 目录 模型 类别名称 量化 导出模型 拉取最新代码 进入官网ultralytics 模型 该项目包括存储在 models 和 quantized_models 目录中的各种预训练标准 YOLO 模型: 模型类型模型名称标准模型yolo5…...
MySQL和SQL server的区别
在当今数据驱动的世界里,数据库技术的选择对于企业和个人开发者来说至关重要。MySQL 和 SQL Server 是两个广泛使用的数据库管理系统(DBMS),它们各自拥有独特的优势和适用场景。本文将深入探讨这两个数据库系统之间的区别…...

C#运动控制——轴IO映射
1、IO映射的作用 该功能允许用户对专用 IO 信号的硬件输入接口进行任意配置,比如轴的急停信号,通过映射以后,可以将所有轴的急停信号映射到某一个IO输入口上,这样,我们只要让一个IO信号有效就可以触发所有轴的急停。 进…...

DeepSeek官方发布R1模型推荐设置
今年以来,DeepSeek便在AI领域独占鳌头,热度一骑绝尘。其官方App更是创造了惊人纪录,成为史上最快突破3000万日活的应用,这一成绩无疑彰显了它在大众中的超高人气与强大吸引力。一时间,各大AI及云服务厂商纷纷投身其中&…...
DeepSeek教unity------MessagePack-03
数据契约兼容性 你可以使用 [DataContract] 注解代替 [MessagePackObject]。如果类型用 DataContract 进行注解,可以使用 [DataMember] 注解代替 [Key],并使用 [IgnoreDataMember] 代替 [IgnoreMember]。 然后,[DataMember(Order int)] 的…...

《安富莱嵌入式周报》第350期:Google开源Pebble智能手表,开源模块化机器人平台,开源万用表,支持10GHz HRTIM的单片机,开源CNC控制器
周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版: https://www.bilibili.com/video/BV1YPKEeyEeM/ 《安富莱嵌入式周报》第350期:Google开…...

img标签的title和alt
img标签的title和alt 显示上 title:鼠标移入到图片上时候显示的内容; alt:图片无法加载时候显示的内容; <div class"box"><div><!-- title --><h3>title</h3><img src"./image/poster.jpg" title"这是封…...

MambaMorph brain MR-CT
loss代码实现了几种用于医学图像配准(Registration)和分割(Segmentation)任务的损失函数,主要包括以下几种: NCC (Normalized Cross-Correlation): 功能: 计算局部归一化互相关损失,用于衡量两个图像之间的相似性。 应用场景: 通常用于图像配准任务,通过最大化图像之间…...

小米 R3G 路由器(Pandavan)实现网络打印机功能
小米 R3G 路由器(Pandavan)实现网络打印机功能 一、前言 家中有多台 PC 设备需要打印服务,但苦于家中的 Epson L380 打印机没有网络打印功能,并且配置 Windows 共享打印机实在是过于繁琐且需要共享机保持唤醒状态过于费电。想到…...

Python PyCharm DeepSeek接入
Python PyCharm DeepSeek接入 创建API key 首先进入DeepSeek官网,https://www.deepseek.com/ 点击左侧“API Keys”,创建API key,输出名称为“AI” 点击“创建",将API key保存,复制在其它地方。 在PyCharm中下载Continue插件 安装 下载中 下载完成后,点击OK 配…...
【ISO 14229-1:2023 UDS诊断全量测试用例清单系列:第二十节】
ISO 14229-1:2023 UDS诊断服务测试用例全解析(WriteMemoryByAddress_0x3D服务) 作者:车端域控测试工程师 更新日期:2025年02月14日 关键词:UDS协议、0x3D服务、内存写入、ISO 14229-1:2023、ECU测试 一、服务功能概述…...

jemalloc 5.3.0的base模块的源码及调用链使用场景的详细分析
一、背景 这篇博客,我们继续之前的 由jemalloc 5.3.0初始化时的内存分配的分析引入jemalloc的三个关键概念及可借鉴的高性能编码技巧-CSDN博客 博客里对初始化分配逻辑进行分析,已经涉及到了jemalloc 5.3.0里的非常重要的base模块的一部分逻辑ÿ…...

ThreadLocal源码分析
文章目录 1.核心数据结构 ThreadLocalMap1.静态内部类 Entry2.真正存储数据的是table数组 2.ThreadLocal.set()方法源码详解1.set2.getMap3.ThreadLocalMap.set4.createMap5.rehash6.resize 3.ThreadLocalMap.get()详解1.get2.ThreadLocalMap.getEntry3.getEntryAfterMiss 4.Th…...
Python爬虫实战:获取笔趣阁图书信息,并做数据分析
注意:以下内容仅供技术研究,请遵守目标网站的robots.txt规定,控制请求频率避免对目标服务器造成过大压力! 1. 环境准备与反爬策略 python import requests from bs4 import BeautifulSoup import pandas as pd import re import time import random from fake_useragent …...
如何在Java EE中使用标签库?
在Java EE(现在称为Jakarta EE)中使用标签库(Tag Library),主要是通过JSP标准标签库(JSTL)或自定义标签库来实现的。标签库允许在JSP页面中使用自定义的标签,从而简化页面逻辑、增强…...

3天功能开发→3小时:通义灵码2.0+DEEPSEEK实测报告,单元测试生成准确率92%的秘密
前言 随着人工智能技术的迅猛发展,AI 赋能编程成为了必然趋势。通义灵码应运而生,它是阿里巴巴集团在人工智能与编程领域深度探索的结晶。通义灵码旨在借助 AI 的强大能力,为开发者提供更加智能、高效的编程辅助工具。通义灵码 2.0 作为其升…...

STM32 Flash详解教程文章
目录 Flash基本概念理解 Flash编程接口FPEC Flash擦除/写入流程图 Flash选项字节基本概念理解 Flash电子签名 函数读取地址下存放的数据 Flash的数据处理限制部分 编写不易,请勿搬运,感谢理解!!! Flash基本概念…...

ubuntu服务器部署
关闭欢迎消息 服务器安装好 ubuntu 系统后,进行终端登录,会显示出很多的欢迎消息 通过在用户的根目录下执行 touch .hushlogin 命令,再次登录终端就不会出现欢迎消息 修改hostname显示 修改 /etc/hostname 文件内容为主机名,保…...

小爱音箱控制手机和电视听歌的尝试
最近买了小爱音箱pro,老婆让我扔了,吃灰多年的旧音箱。当然舍不得,比小爱还贵,刚好还有一台红米手机,能插音箱,为了让音箱更加灵活,买了个2元的蓝牙接收模块Type-c供电3.5接口。这就是本次尝试起…...

问卷数据分析|SPSS实操之独立样本T检验
适用条件: 检验分类变量和定量变量之间的差异 分类变量只能为二分类变量,如性别 1.选择分析--比较平均值--独立样本检验 2. 在下方选择性别(分类变量) 3. 点击定义组,组1输入1,组2输入2 4.在上方填入定量…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...