当前位置: 首页 > news >正文

【动手学强化学习】02多臂老虎机

问题定义

强化学习关注的是在于环境交互中学习,是一种试错学习的范式。在正式进入强化学习之前,我们先来了解多臂老虎机问题。该问题也被看作简化版的强化学习,帮助我们更快地过度到强化学习阶段。

有一个拥有 K K K 根拉杆的老虎机,拉动每根拉杆都有着对应奖励 R R R,且这些奖励可以进行累加。在各根拉杆的奖励分布未知的情况下,从头开始尝试,在进行 T T T 步操作次数后,得到尽可能高的累计奖励。
在这里插入图片描述

对于每个动作 a a a,我们定义其期望奖励是 Q ( a ) Q(a) Q(a)。是,至少存在一根拉杆,它的期望奖励不小于拉动其他任意一根拉杆,我们将该最优期望奖励表示为
Q ∗ = max ⁡ a ∈ A Q ( a ) Q^* = \max_{a \in A}Q(a) Q=aAmaxQ(a)
为了更为直观的表示实际累计奖励和真实累计奖励之间的误差,我们引入懊悔概念,用来表示它们之间的差值。
R ( a ) = Q ∗ − Q ( a ) R(a) = Q^* - Q(a) R(a)=QQ(a)

下面我们编写代码来实现一个拉杆数为 10 的多臂老虎机。其中拉动每根拉杆的奖励服从伯努利分布(Bernoulli distribution),即每次拉下拉杆有的概率获得的奖励为 1,有的概率获得的奖励为 0。奖励为 1 代表获奖,奖励为 0 代表没有获奖。

import numpy as np
import matplotlib.pyplot as plt
class BernouliiBandit:def __init__(self, K):self.probs:np.ndarray = np.random.uniform(size=K)  # type: ignore # 随机生成K个0~1的数,作为拉动每根拉杆的获奖 ## 概率self.best_idx = np.argmax(self.probs)  # 获奖概率最大的拉杆self.best_prob = self.probs[self.best_idx]  # 最大的获奖概率self.K = Kdef step(self, k):if np.random.rand() < self.probs[k]:return 1else:return 0

接下来我们用一个 Solver 基础类来实现上述的多臂老虎机的求解方案。

class Solver:def __init__(self, bandit) -> None:self.bandit = banditself.counts = np.zeros(self.bandit.K)self.regret = 0self.actions = []self.regrets = []def update_regret(self, k):self.regret += self.bandit.best_prob - self.bandit.probs[k]self.regrets.append(self.regret)def run_one_step(self):return NotImplementedErrordef run(self, num_steps):for _ in range(num_steps):k:int = self.run_one_step() #type:ignoreself.counts[k] += 1self.actions.append(k)self.update_regret(k)

解决方法

这个问题的难度在于探索和利用的平衡。一个最简单的策略就是一直选择第 k k k 根拉杆,但这样太依赖运气,万一是最差的一根,就会死翘翘;或者每次都随机选,这种方式只可能得到平均期望,而不会得到最优期望。因此探索和利用要相互权衡才有可能得到最好的结果。

贪心算法

完全贪婪算法即在每一时刻采取期望奖励估值最大的动作(拉动拉杆),这就是纯粹的利用,而没有探索,所以我们通常需要对完全贪婪算法进行一些修改,其中比较经典的一种方法为 ϵ \epsilon ϵ -Greedy 算法。 ϵ \epsilon ϵ -Greedy 在完全贪婪算法的基础上添加了噪声,每次以概率 ϵ \epsilon ϵ 选择以往经验中期望奖励估值最大的那根拉杆(利用),以概率 ϵ \epsilon ϵ 随机选择一根拉杆(探索)

class EpsilonGreedy(Solver):def __init__(self, bandit, epsilon=0.1, init_prob=1.0):super(EpsilonGreedy, self).__init__(bandit)self.epsilon = epsilonself.estimates = np.array([init_prob]*self.bandit.K)def run_one_step(self):if np.random.random() < self.epsilon:k = np.random.randint(0, self.bandit.K)else:k = np.argmax(self.estimates)r = self.bandit.step(k)self.estimates[k] += 1.0/(self.counts[k] + 1) * (r - self.estimates[k])return k

为了更加直观的展示,可以把每一时间步的累积函数绘制出来。

def plot_results(solvers, solver_names):for idx, solver in enumerate(solvers):time_list = range(len(solver.regrets))plt.plot(time_list, solver.regrets, label=solver_names[idx])plt.xlabel('Time steps')plt.ylabel('Cumulative regrets')plt.title('%d-armed bandit' % solvers[0].bandit.K)plt.legend()plt.show()np.random.seed(1)
epsilon_greedy_solver = EpsilonGreedy(bandit_10_arm, epsilon=0.01)
epsilon_greedy_solver.run(5000)
print('epsilon-贪婪算法的累积懊悔为:', epsilon_greedy_solver.regret)
plot_results([epsilon_greedy_solver], ["EpsilonGreedy"])

在这里插入图片描述

上置信界算法

上置信界算法是一种经典的基于不确定性的策略算法,它的思想用到了一个非常著名的数学原理:霍夫丁不等式

在霍夫丁不等式中,令 ( X 1 , … , X n ) (X_1, \dots, X_n) (X1,,Xn) n n n 个独立同分布的随机变量,取值范围为 ([0,1]),其经验期望为:

x ˉ n = 1 n ∑ j = 1 n X j \bar{x}_n = \frac{1}{n} \sum_{j=1}^{n} X_j xˉn=n1j=1nXj

则有:

P { E [ X ] ≥ x ˉ n + u } ≤ e − 2 n u 2 \mathbb{P} \left\{ \mathbb{E}[X] \geq \bar{x}_n + u \right\} \leq e^{-2nu^2} P{E[X]xˉn+u}e2nu2

class UCB(Solver):def __init__(self, bandit, init_prob, coef):super(UCB, self).__init__(bandit)self.total_count = 0self.estimates = np.array([init_prob*1.0]*self.bandit.K)self.coef = coefdef run_one_step(self):self.total_count += 1ucb = self.estimates + self.coef * np.sqrt(np.log(self.total_count) / (2 * (self.counts + 1)))k = np.argmax(ucb)r = self.bandit.step(k)self.estimates[k] += (r - self.estimates[k]) / (self.counts[k] + 1)return k
np.random.seed(1)
UCB_solver = UCB(bandit_10_arm, 1, 1)
UCB_solver.run(5000)
print('上置信界算法的累积懊悔为:', UCB_solver.regret)
plot_results([UCB_solver], ["UCB"])

在这里插入图片描述

汤普森采样

先假设拉动每根拉杆的奖励服从一个特定的概率分布,然后根据拉动每根拉杆的期望奖励来进行选择。但是由于计算所有拉杆的期望奖励的代价比较高,汤普森采样算法使用采样的方式,即根据当前每个动作 的奖励概率分布进行一轮采样,得到一组各根拉杆的奖励样本,再选择样本中奖励最大的动作。可以看出,汤普森采样是一种计算所有拉杆的最高奖励概率的蒙特卡洛采样方法。

class ThompsonSampling(Solver):def __init__(self, bandit) -> None:super(ThompsonSampling, self).__init__(bandit)self._a = np.ones(self.bandit.K)self._b = np.ones(self.bandit.K)def run_one_step(self):samples = np.random.beta(self._a, self._b)k = np.argmax(samples)r = self.bandit.step(k)self._a[k] += rself._b[k] += (1-r)return knp.random.seed(1)
thompson_sampling_solver = ThompsonSampling(bandit_10_arm)
thompson_sampling_solver.run(5000)
print('汤普森采样算法的累积懊悔为:', thompson_sampling_solver.regret)
plot_results([thompson_sampling_solver], ["ThompsonSampling"])

在这里插入图片描述

相关文章:

【动手学强化学习】02多臂老虎机

问题定义 强化学习关注的是在于环境交互中学习&#xff0c;是一种试错学习的范式。在正式进入强化学习之前&#xff0c;我们先来了解多臂老虎机问题。该问题也被看作简化版的强化学习&#xff0c;帮助我们更快地过度到强化学习阶段。 有一个拥有 K K K 根拉杆的老虎机&#…...

【网络编程】之Udp网络通信步骤

【网络编程】之Udp网络通信步骤 TCP网络通信TCP网络通信的步骤对于服务器端对于客户端 TCP实现echo功能代码实现服务器端getsockname函数介绍 客户端效果展示 对比两组函数 TCP网络通信 TCP网络通信的步骤 对于服务器端 创建监听套接字。&#xff08;调用socket函数&#xff…...

Java 基于 SpringBoot+Vue 的家政服务管理平台设计与实现

博主介绍&#xff1a;✌程序员徐师兄、8年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战*✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447…...

架构——Nginx功能、职责、原理、配置示例、应用场景

以下是关于 Nginx 的功能、职责、原理、配置示例、应用场景及其高性能原因的详细说明&#xff1a; 一、Nginx 的核心功能 1. 静态资源服务 功能&#xff1a;直接返回静态文件&#xff08;如 HTML、CSS、JS、图片、视频等&#xff09;。配置示例&#xff1a;server {listen 80…...

Spring Boot中使用Flyway进行数据库迁移

文章目录 概要Spring Boot 集成 FlywayFlyway 其他用法bug错误Flyway版本不兼容数据库存在表了Flyway 的校验和&#xff08;Checksum&#xff09;不匹配 概要 在 Spring Boot 项目开发中&#xff0c;数据库的变更不可避免。手动执行 SQL 脚本不仅容易出错&#xff0c;也难以维…...

CAS单点登录(第7版)9.属性

如有疑问&#xff0c;请看视频&#xff1a;CAS单点登录&#xff08;第7版&#xff09; 属性 属性定义 概述 属性定义 从身份验证或属性存储库源获取和解析 CAS 中属性的定义时&#xff0c;往往使用其名称进行定义和引用&#xff0c;而无需任何其他元数据或修饰。例如&#…...

137,【4】 buuctf web [SCTF2019]Flag Shop

进入靶场 都点击看看 发现点击work会增加&#xffe5; 但肯定不能一直点下去 抓包看看 这看起来是一个 JWT&#xff08;JSON Web Token&#xff09;字符串。JWT 通常由三部分组成&#xff0c;通过点&#xff08;.&#xff09;分隔&#xff0c;分别是头部&#xff08;Header&…...

P9853 [入门赛 #17] 方程求解

P9853 [入门赛 #17] 方程求解 - 洛谷 题目描述 小A有n个关于x的方程&#xff0c;第i个方程形如ai​xi​bi​ci​。方程的解x均为正整数&#xff0c;例如下面几个方程都是符合要求的方程&#xff1a; 2x 4 10 -3x 13 10 4x - 8 16 其中&#xff0c;第一组方程的解为x1​…...

【网络安全 | 漏洞挖掘】跨子域账户合并导致的账户劫持与删除

未经许可,不得转载。 文章目录 概述正文漏洞成因概述 在对目标系统进行安全测试时,发现其运行着两个独立的域名——一个用于司机用户,一个用于开发者/企业用户。表面上看,这两个域名各自独立管理账户,但测试表明它们在处理电子邮件变更时存在严重的逻辑漏洞。该漏洞允许攻…...

spring集成activiti流程引擎(源码)

前言 activiti工作流引擎项目&#xff0c;企业erp、oa、hr、crm等企事业办公系统轻松落地&#xff0c;请假审批demo从流程绘制到审批结束实例。 源码获取&#xff1a;本文末个人名片直接获取。 一、项目形式 springbootvueactiviti集成了activiti在线编辑器&#xff0c;流行…...

ROS基本功能

1.Topic话题与Message消息&#xff08;主要通讯方式&#xff09; 基本规则 发布消息的步骤 常用工具 话题的订阅 使用launch启动多个节点...

C++基础系列【13】类的成员初始化

博主介绍&#xff1a;程序喵大人 35- 资深C/C/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C20高级编程》《C23高级编程》等多本书籍著译者更多原创精品文章&#xff0c;首发gzh&#xff0c;见文末&#x1f447;&#x1f…...

Redis 03章——10大数据类型概述

一、which10 &#xff08;1&#xff09;一图 &#xff08;2&#xff09;提前声明 这里说的数据类型是value的数据类型&#xff0c;key的类型都是字符串 官网&#xff1a;Understand Redis data types | Docs &#xff08;3&#xff09;分别是 1.3.1redis字符串&#xff0…...

Ubuntu 上安装 Elasticsearch 7.6.0

要在 Ubuntu 24.04 上安装 Elasticsearch 7.6.0&#xff0c;可以按照以下步骤进行&#xff1a; 步骤 1: 更新系统依赖 确保系统是最新的&#xff0c;并安装必要的依赖包&#xff1a; sudo apt update sudo apt upgrade -y sudo apt install -y apt-transport-https openjdk-1…...

Android ListPreference使用

Android ListPreference使用 参考 添加链接描述 导入 androidx.preference.ListPreferenceListPreference是Android中的一个Preference子类,用于显示一个可选择的列表,并且可以保存用户所选择的值。它继承自DialogPreference,可以在用户点击时弹出一个对话框,显示可选择的…...

Java 大视界 -- 绿色大数据:Java 技术在节能减排中的应用与实践(90)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

计算四个锚点TOA定位中GDOP的详细步骤和MATLAB例程

该MATLAB代码演示了在三维空间中,使用四个锚点的TOA(到达时间)定位技术计算几何精度衰减因子(GDOP)的过程。如需帮助,或有导航、定位滤波相关的代码定制需求,请联系作者 文章目录 DOP计算原理MATLAB例程运行结果示例关键点说明扩展方向另有文章: 多锚点Wi-Fi定位和基站…...

英码科技基于昇腾算力实现DeepSeek离线部署

DeepSeek-R1 模型以其创新架构和高效能技术迅速成为行业焦点。如果能够在边缘进行离线部署&#xff0c;不仅能发挥DeepSeek大模型的效果&#xff0c;还能确保数据处理的安全性和可控性。 英码科技作为AI算力产品和AI应用解决方案服务商&#xff0c;积极响应市场需求&#xff0…...

CTex安装和使用(1)

CTeX是一款基于TeX/LaTeX的集成开发环境&#xff08;IDE&#xff09;&#xff0c;主要用于文档排版&#xff0c;特别是在处理复杂的数学公式和学术论文方面具有显著优势。以下是CTeX的一些基本信息&#xff1a; 功能 文档编辑 &#xff1a;提供了一个友好的界面用于编辑LaTeX…...

Oracle序列(基础操作)

序列概念 序列是用于生成唯一、连续序号的对象。 序列可以是升序的&#xff0c;也可以是降序的。 使用CREATE SEQUENCE语句创建序列。 start with 1 指定第一个序号从1开始 increment by 1 指定序号之间的间隔为1 increment by -1 降序1000 999 998这样 maxvalue 2000 表…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...