当前位置: 首页 > news >正文

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)【ESP32指向鼠标】

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)

在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。
四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器人学、计算机图形学和航空航天 等领域。

四元数的定义

一个四元数 q 由四个实数组成:
q = w + x i + y j + z k q=w+xi+yj+zk q=w+xi+yj+zk
其中:w,x,y,z 是实数;i,j,k 是虚单位,满足特定的乘法规则

旋转的基本表示方式

方式表示方法优缺点
欧拉角(Euler Angles)(α,β,γ) 对应绕 X, Y, Z 轴的旋转优点:直观易理解,和现实生活的旋转方式类似。缺点:存在万向锁(Gimbal Lock)问题,计算复杂。
旋转矩阵(Rotation Matrix)3×3 矩阵优点:适用于线性代数计算,方便复合旋转。缺点:需要存储 9 个值,数值误差累积会导致非正交性。
四元数(Quaternion)q=w+xi+yj+zk优点:旋转计算简单,存储更紧凑(只需要 4 个数),避免万向锁,插值平滑。缺点:不直观,不容易手动调整。

旋转四元数的定义

一个 旋转四元数q 表示围绕单位向量 (x,y,z) 旋转角度 θ 的旋转:
q = cos ⁡ θ 2 + sin ⁡ θ 2 ( x i + y j + z k ) q=\cos\frac{\theta}{2}+\sin\frac{\theta}{2}(x\mathbf{i}+y\mathbf{j}+z\mathbf{k}) q=cos2θ+sin2θ(xi+yj+zk)
或写成向量形式:
q = ( cos ⁡ θ 2 , x sin ⁡ θ 2 , y sin ⁡ θ 2 , z sin ⁡ θ 2 ) q=\left(\cos\frac{\theta}{2},x\sin\frac{\theta}{2},y\sin\frac{\theta}{2},z\sin\frac{\theta}{2}\right) q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)
其中:θ 是旋转角度
(x,y,z) 是旋转轴(必须是单位向量)
(xi,yj,zk) 是四元数的虚部,表示旋转方向
注意:旋转四元数必须是单位四元数,即满足:
∣ q ∣ = w 2 + x 2 + y 2 + z 2 = 1 |q|=\sqrt{w^2+x^2+y^2+z^2}=1 q=w2+x2+y2+z2 =1

使用四元数进行 3D 旋转

假设有一个点 v = ( v x , v y , v z ) \mathbf{v}=(v_x,v_y,v_z) v=(vx,vy,vz),我们想用四元数 q 旋转它。方法如下:

  • 将点转换为纯四元数(虚部存储向量坐标)
    p = ( 0 , v x , v y , v z ) p=(0,v_x,v_y,v_z) p=(0,vx,vy,vz)
  • 计算旋转后的点
    p ′ = q p q − 1 p^{\prime}=qpq^{-1} p=qpq1
    其中: q − 1 q^{-1} q1是四元数的逆(单位四元数的逆就是它的共轭)
    旋转后的点 p ′ p^{\prime} p也是一个纯四元数,其中的虚部给出新坐标。
  • 单位四元数的逆
    q − 1 = q ∗ = ( cos ⁡ θ 2 , − x sin ⁡ θ 2 , − y sin ⁡ θ 2 , − z sin ⁡ θ 2 ) q^{-1}=q^*=(\cos\frac{\theta}{2},-x\sin\frac{\theta}{2},-y\sin\frac{\theta}{2},-z\sin\frac{\theta}{2}) q1=q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)

例程(C语言)

旋转 (1, 0, 0) 向量 绕 Y 轴旋转 90°。
计算后,结果应该接近 (0, 0, -1),即 X 轴向量变成 Z 轴负方向。

#include <stdio.h>
#include <math.h>// 定义四元数结构体
typedef struct {double w, x, y, z;
} Quaternion;// 定义向量结构体
typedef struct {double x, y, z;
} Vector3;// 归一化四元数(单位四元数)
Quaternion normalize(Quaternion q) {double magnitude = sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z);q.w /= magnitude;q.x /= magnitude;q.y /= magnitude;q.z /= magnitude;return q;
}// 计算四元数的共轭
Quaternion conjugate(Quaternion q) {Quaternion conj = {q.w, -q.x, -q.y, -q.z};return conj;
}// 计算两个四元数的乘法
Quaternion multiply(Quaternion q1, Quaternion q2) {Quaternion result;result.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;result.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;result.y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;result.z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;return result;
}// 旋转向量 v 使用四元数 q
Vector3 rotate_vector(Vector3 v, Quaternion q) {Quaternion p = {0, v.x, v.y, v.z}; // 将向量转换为纯四元数Quaternion q_conj = conjugate(q);  // 计算四元数共轭// 计算旋转后的四元数 p' = q * p * q^(-1)Quaternion temp = multiply(q, p);Quaternion rotated = multiply(temp, q_conj);// 结果的虚部即为旋转后的向量Vector3 result = {rotated.x, rotated.y, rotated.z};return result;
}// 生成绕 (ux, uy, uz) 轴旋转 theta 角度的四元数
Quaternion from_axis_angle(double ux, double uy, double uz, double theta) {Quaternion q;double half_theta = theta * M_PI / 360.0; // 角度转弧度并除以 2double sin_half_theta = sin(half_theta);q.w = cos(half_theta);q.x = ux * sin_half_theta;q.y = uy * sin_half_theta;q.z = uz * sin_half_theta;return normalize(q);
}int main() {// 定义一个向量 (1, 0, 0)Vector3 v = {1, 0, 0};// 绕 Y 轴旋转 90 度的四元数Quaternion q = from_axis_angle(0, 1, 0, 90);// 旋转向量Vector3 rotated_v = rotate_vector(v, q);// 输出旋转后的结果printf("旋转后向量: (%f, %f, %f)\n", rotated_v.x, rotated_v.y, rotated_v.z);return 0;
}

代码解析

  1. 定义数据结构
    Quaternion 结构体存储四元数(w, x, y, z)
    Vector3 结构体存储 3D 向量(x, y, z)
  2. 归一化四元数
    旋转四元数必须是 单位四元数,所以 normalize() 函数保证四元数的模长为 1。
  3. 计算四元数共轭
    conjugate() 计算 (对于单位四元数,逆就是共轭)。
  4. 四元数乘法
    multiply() 执行两个四元数的乘法,用于计算旋转变换。
  5. 向量旋转
    rotate_vector() 采用公式 计算旋转后的向量。
  6. 从轴-角度转换为四元数
    from_axis_angle() 计算沿任意轴旋转 theta 角度的旋转四元数。

如预期,原来的 (1, 0, 0) 经过 绕 Y 轴旋转 90° 后变成了 (0, 0, -1)

相关文章:

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)【ESP32指向鼠标】

四元数如何用于 3D 旋转&#xff08;代替欧拉角和旋转矩阵&#xff09; 在三维空间中&#xff0c;物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。 四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点&#xff0c;因此广泛用于 游戏开发、机器…...

JavaScript 内置对象-日期对象

在JavaScript中&#xff0c;处理日期和时间是一个常见的需求。无论是显示当前时间、计算两个日期之间的差异&#xff0c;还是格式化日期字符串&#xff0c;Date 对象都能提供强大的支持。本文将详细介绍 Date 对象的使用方法&#xff0c;包括创建日期实例、获取和设置日期值、以…...

本地大模型编程实战(19)RAG(Retrieval Augmented Generation,检索增强生成)(3)

文章目录 准备创建矢量数据库对象创建 LangGraph 链将检索步骤转化为工具定义节点构建图 见证效果qwen2.5llama3.1MFDoom/deepseek-r1-tool-calling:7b 总结代码参考 上一篇文章我们演练了一个 用 langgraph 实现的 RAG(Retrieval Augmented Generation,检索增强生成) 系统。本…...

DeepSeek与ChatGPT:AI语言模型的全面对决

DeepSeek与ChatGPT&#xff1a;AI语言模型的全面对决 引言&#xff1a;AI 语言模型的时代浪潮一、认识 DeepSeek 与 ChatGPT&#xff08;一&#xff09;DeepSeek&#xff1a;国产新星的崛起&#xff08;二&#xff09;ChatGPT&#xff1a;AI 界的开拓者 二、DeepSeek 与 ChatGP…...

2024年年终总结

2024年终于过去了&#xff0c;这绝对是我人生中最惨痛的一年&#xff01;被小人欺骗、被庸人耽误、被自己蠢到&#xff01;不由的让我想起了22年那次算命&#xff0c;算命先生说我十年低谷期&#xff0c;如果从15年进创业公司开始&#xff0c;24年是最后一年&#xff0c;果然应…...

利用 Valgrind 检测 C++ 内存泄露

Valgrind 是一款运行在 Linux 系统上的编程工具集&#xff0c;主要用于调试和分析程序的性能、内存使用等问题。其中最常用的工具是 Memcheck&#xff0c;它可以帮助检测 C 和 C 程序中的内存管理错误&#xff0c;如内存泄漏、使用未初始化的内存、越界访问等。 安装 这里我以…...

Python中的HTTP客户端库:httpx与request | python小知识

Python中的HTTP客户端库&#xff1a;httpx与request | python小知识 在Python中&#xff0c;发送HTTP请求和处理响应是网络编程的基础。requests和httpx是两个常用的HTTP库&#xff0c;它们都提供了简洁易用的API来发送HTTP请求。然而&#xff0c;httpx作为新一代的HTTP客户端…...

【Python】Python入门基础——环境搭建

学习Python&#xff0c;首先需要搭建一个本地开发环境&#xff0c;或是使用线上开发环境&#xff08;各类练习网站&#xff09;&#xff0c;这里主要记录本地开发环境的配置。 目录&#xff1a; 一、下载和安装python解释器 官网下载地址&#xff1a;Download Python | Pytho…...

2025 pwn_A_childs_dream

文章目录 fc/sfc mesen下载和使用推荐 fc/sfc https://www.mesen.ca/docs/ mesen2安装&#xff0c;vscode安装zg 任天堂yyds w d 左右移动 u结束游戏 i崩溃或者卡死了 L暂停 D658地方有个flag 发现DEEE会使用他。且只有这个地方&#xff0c;maybe会输出flag&#xff0c;应…...

面试题整理:操作系统

文章目录 操作系统操作系统基础1. 操作系统的功能&#xff1f;2. 什么是用户态和内核态&#xff1f; 进程和线程1. 是什么&#xff1f;区别&#xff1f;2. ⭐线程间的同步的方式有哪些&#xff1f;3. PCB 是什么&#xff1f;包含哪些信息&#xff1f;4. 进程的状态有哪些&#…...

构建未来教育的基石:智慧校园与信息的重要性

随着科技的迅猛发展&#xff0c;教育领域正经历一场深刻的变革。在这个过程中&#xff0c;“智慧校园”作为教育信息化的重要实践&#xff0c;扮演着不可或缺的角色。智慧校园不仅仅是硬件设施的升级&#xff0c;更是一种全新的教育理念&#xff0c;强调利用信息技术优化教育资…...

C# 控制台相关 API 与随机数API

C# 控制台相关 API 与随机数API 控制台输入输出 功能说明 Console.WriteLine(string): 输出字符串并换行Console.Write(string, string): 输出字符串不换行Console.ReadLine(): 等待用户输入并返回字符串Console.ReadKey(bool).KeyChar: 读取按键&#xff0c;指定是否显示输…...

【踩坑】⭐️MyBatis的Mapper接口中不建议使用重载方法

目录 &#x1f378;前言 &#x1f37b;一、背景 &#x1f379;二、问题处理 &#x1f49e;️三、处理方法 &#x1f378;前言 小伙伴们大家好&#xff0c;很久没有水..不是&#xff0c;写文章了&#xff0c;都收到系统的消息了&#xff1b;我算下时间&#xff0c;上周是单休…...

CSS Grid 网格布局,以及 Flexbox 弹性盒布局模型,它们的适用场景是什么?

CSS Grid网格布局和Flexbox弹性盒布局模型都是现代CSS布局的重要工具&#xff0c;它们各自具有独特的优势和适用场景。 作为前端开发工程师&#xff0c;理解这些布局模型的差异和适用场景对于编写高效、可维护的代码至关重要。 CSS Grid网格布局 适用场景&#xff1a; 复杂…...

HDFS体系结构

HDFS 支持主从结 构 &#xff0c; 主节 点 称为 NameNode &#xff0c;从节点称为 DataNode HDFS中还包含一个 SecondaryNameNode 进程&#xff0c;只要辅助主节点 公司BOSS&#xff1a;NameNode &#xff08;NN&#xff09; 秘书&#xff1a;SecondaryNameNode (2NN) 员工&a…...

AI大模型的技术突破与传媒行业变革

性能与成本&#xff1a;AI大模型的“双轮驱动” 过去几年&#xff0c;AI大模型的发展经历了从实验室到产业化的关键转折。2025年初&#xff0c;以DeepSeek R1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品&#xff0c;而训练成本仅为传统模型的几十分之一。这…...

vscode/cursor+godot C#中使用socketIO

在 Visual Studio Code(VS Code)中安装 NuGet 包&#xff08;例如SocketIOClient&#xff09;&#xff0c;你可以通过以下几种方法&#xff1a; 方法 1&#xff1a;使用dotnet cli 打开终端&#xff1a;在 VS Code 中按下Ctrl 或者通过菜单View -> Terminal打开终端。 导…...

分段线性插值

分段线性插值 分段线性插值&#xff0c;就是将插值点用折线段连接起来逼近f(x)。设已知节点 a x 0 < x 1 < ⋅ ⋅ ⋅ < x n b ax_0<x_1<<x_nb ax0​<x1​<⋅⋅⋅<xn​b上的函数值 f 0 , f 1 , . . . , f n f_0,f_1,...,f_n f0​,f1​,...,fn​&a…...

制作一个项目用于研究elementUI的源码

需求&#xff1a;修改el-tooltip的颜色&#xff0c;发现传递参数等方法都不太好用&#xff0c;也可以使用打断点的方式&#xff0c;但也有点麻烦&#xff0c;因此打算直接修改源码&#xff0c;把组件逻辑给修改了 第一步下载源码 源码地址 GitHub - ElemeFE/element: A Vue.j…...

[AI]从零开始的llama.cpp部署与DeepSeek格式转换、量化、运行教程

一、前言 在上一次的DeepSeek的部署教程中&#xff0c;我们使用Ollama与LM Studio很轻松的部署了DeepSeek并且也完成了相关API的调用&#xff0c;如果还有不会的小伙伴请看下面的教程&#xff1a; DeepSeek本地部署&#xff1a;[AI]从零开始的DeepSeek本地部署及本地API调用教…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...