当前位置: 首页 > news >正文

本地部署MindSearch(开源 AI 搜索引擎框架),然后上传到 hugging face的Spaces——L2G6

部署MindSearch到 hugging face Spaces上——L2G6

任务1

在 官方的MindSearch页面 复制Spaces应用到自己的Spaces下,Space 名称中需要包含 MindSearch 关键词,请在必要的步骤以及成功的对话测试结果当中

实现过程如下:

2.1 MindSearch 简介

MindSearch 是一个开源的 AI 搜索引擎框架,具有与 Perplexity.ai Pro 相同的性能。我们可以轻松部署它来构建自己的专属搜索引擎,可以基于闭源的LLM(如GPT、Claude系列),也可以使用开源的LLM(如经过专门优化的InternLM2.5 系列模型,能够在MindSearch框架中提供卓越的性能) 最新版的MindSearch拥有以下特性:

  • 🤔 任何你想知道的问题:MindSearch 通过搜索解决你在生活中遇到的各种问题
  • 📚 深度知识探索:MindSearch 通过数百个网页的浏览,提供更广泛、深层次的答案
  • 🔍 透明的解决方案路径:MindSearch 提供了思考路径、搜索关键词等完整的内容,提高回复的可信度和可用性。
  • 💻 多种用户界面:为用户提供各种接口,包括 React、Gradio、Streamlit 和本地调试。根据需要选择任意类型。
  • 🧠 动态图构建过程:MindSearch 将用户查询分解为图中的子问题节点,并根据 WebSearcher 的搜索结果逐步扩展图。

在这里插入图片描述

2.2 开发环境配置

在入门岛我们已经提到过,想要简单部署到hugging face上,我们需要将开发机平台从InternStudio 替换成 GitHub CodeSpace。且随着硅基流动提供了免费的InternLM2.5-7B-Chat的API服务,大大降低了部署门槛,我们无需GPU资源也可以部署和使用MindSearch,这也是可以利用CodeSpace完成本次实验的原因。 那就让我们一起来看看如何使用硅基流动的API来部署MindSearch吧~

2.2.1. 打开codespace主页,选择Blank模板进行创建

在这里插入图片描述

2.2.2. 创建conda环境隔离并安装依赖

如果只针对于这个实验的话,其实在codespace里面不用单独创建conda环境。但是隔离是一个好习惯,因此我们还是创建一个相应的虚拟环境来隔离

conda create -n mindsearch python=3.10 -y
conda init

如果是新建的codespace,在第一次创建conda环境时,需要conda init,再另启一个终端并activate

conda activate mindsearchcd /workspaces/codespaces-blank
git clone https://github.com/InternLM/MindSearch.git && cd MindSearch && git checkout ae5b0c5pip install -r requirements.txt

2.3. 获取硅基流动API KEY

因为要使用硅基流动的 API Key,所以接下来便是注册并获取 API Key 了。 首先,我们打开它的登录界面来注册硅基流动的账号(如果注册过,则直接登录即可)。 在完成注册后,打开api key页面来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。

2.4. 启动MindSearch

2.4.1. 启动后端

由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们在一个终端A中可以直接执行下面的代码来启动 MindSearch 的后端。

export SILICON_API_KEY=<上面复制的API KEY>
conda activate mindsearch# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch --asy
  • –lang: 模型的语言,en 为英语,cn 为中文。
  • –model_format: 模型的格式。
    • internlm_silicon 为 InternLM2.5-7b-chat 在硅基流动上的API模型
  • –search_engine: 搜索引擎。
    • DuckDuckGoSearch 为 DuckDuckGo 搜索引擎。
    • BingSearch 为 Bing 搜索引擎。
    • BraveSearch 为 Brave 搜索引擎。
    • GoogleSearch 为 Google Serper 搜索引擎。
    • TencentSearch 为 Tencent 搜索引擎。

在这里插入图片描述

2.4.2. 启动前端

在后端启动完成后,我们打开新终端B运行如下命令来启动 MindSearch 的前端:

conda activate mindsearch
# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python frontend/mindsearch_gradio.py

在这里插入图片描述

前后端都启动后,我们应该可以看到github自动为这两个进程做端口转发:

在这里插入图片描述

如果启动前端后没有自动打开前端页面的话,我们可以手动用7882的端口转发地址打开gradio的前端页面~ 然后就可以体验MindSearch gradio版本啦~ 比如向其询问:“Find legal precedents in contract law.” 等待一段时间后,会在页面上输出它的结果。

在这里插入图片描述

可能遇到的问题

在这一步中,可能终端会打印报错信息,但是只要前端页面上没有出现报错就行。如果前端页面上出现错误并终止,那么可能是MindSearch 中 searcher 模块的问题。在上面的例子中我们使用的是DuckDuckGoSearch,因此你也可以尝试其他的搜索引擎API。如我们可以替换为BingSearch 或者 TencentSearch 进行尝试。

# BingSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine BingSearch --asy
# TencentSearch
# python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine TencentSearch --asy

2.5. 部署到自己的 HuggingFace Spaces上

这里我们介绍一种更简单的方法,它就像克隆一样,无需编写代码即可部署自己的Spaces应用~

首先我们找到InternLM官方部署的MindSearch Spaces应用

2.5.1 选择配置

在该页面的右上角,选择Duplicate this Space

在这里插入图片描述

选择如下配置后,即可Duplicate Space

  • Space Hardware选择第一条,即Free的2vCPU即可
  • 填写好SILICON_API_KEY,即上面提到的硅基流动的API KEY

然后就开始部署啦
在这里插入图片描述

2.5.2 测试结果

回到自己头像的space中,会发现,已经有running在运行啦,这样就完成啦快速部署自己的Huggingface的模型啦!

点击就可以测试啦,

在这里插入图片描述

等待Spaces应用启动,当启动好后上方会显示绿色的running标志,这时我们可以输入input进行测试了,我们可以在Sapces应用页面的输入框中输入以下内容:

# input
What are the top 10 e-commerce websites?

测试时可能会发现页面卡住了很久(两三分钟),我们可以查看日志,最后两行可能报如下错误:

graph.add_edge(start_node="root", end_node("contract_enforcement"))SyntaxError: positional argument follows keyword argument

此时需要在页面右上角选择Restart Space,待到重启完成后(显示绿色running标志后)再刷新一下网页页面,再次测试结果如下~

在这里插入图片描述

至此,我们就完成了MindSearch在Hugging Face上面的部署。

相关文章:

本地部署MindSearch(开源 AI 搜索引擎框架),然后上传到 hugging face的Spaces——L2G6

部署MindSearch到 hugging face Spaces上——L2G6 任务1 在 官方的MindSearch页面 复制Spaces应用到自己的Spaces下&#xff0c;Space 名称中需要包含 MindSearch 关键词&#xff0c;请在必要的步骤以及成功的对话测试结果当中 实现过程如下&#xff1a; 2.1 MindSearch 简…...

【大模型系列】Windows系统上运行大语言模型方式

在Windows系统上运行大语言模型&#xff08;LLMs&#xff09;有多种方式&#xff0c;以下是一些具体的方法&#xff1a; GPT4All 简介&#xff1a;GPT4All是一个适用于所有操作系统的LLM框架和聊天机器人应用程序&#xff0c;可以本地运行LLMs&#xff0c;并通过API将其与任何…...

Linux Mem -- Where the mte store and check in the real hardware platform

目录 1 前言 2 MTE tag分类 3 Address tag 4 Memory tag 5 Tag Check 6 Cortex-A710 和 CI-700 系统示例&#xff1a; 1 前言 ARM的MTE允许分配、设置、比较一个 4bit的allocation tag 为16字节粒度的物理地址。当对MTE有一定了解后&#xff0c;应该会产生如下疑问&#…...

连锁企业管理系统的五大核心功能

连锁管理系统对于连锁企业的运营和发展至关重要&#xff0c;以下以核货宝连锁管理系统为例&#xff0c;介绍其五大核心功能&#xff1a; 门店管理功能 门店信息管理&#xff1a;核货宝连锁管理系统可集中管理所有门店的详细信息&#xff0c;包括门店地址、联系方式、营业时间、…...

Docker配置镜像加速-解决黑马商城部署Mysql失败问题

随着 Docker 在容器化应用中的广泛应用&#xff0c;越来越多的开发者选择通过 Docker 来简化开发和部署过程。然而&#xff0c;在使用 Docker 部署应用时&#xff0c;有时会遇到因为镜像下载速度慢或者 MySQL 部署失败等问题&#xff0c;特别是在中国地区&#xff0c;由于网络环…...

Cherno C++ P54 内存:栈与堆

这篇文章我们来谈论一下计算机的内存。在这里&#xff0c;我们着重讨论内存的两个部分&#xff1a;栈与堆。我们需要注意的一点是&#xff0c;这两个概念不是虚拟的&#xff0c;而是在计算机内部真实存在的。它们是我们的CPU当中RAM部分物理上存在的两个区域。我们之所以要重点…...

对项目交接的一些思考

天下大势&#xff0c;分久必合合久必分。这些年交接了很多项目&#xff0c;也从别人那里接手了很多项目。最近又接收了一些项目&#xff0c;但团队接收的效果不是很好&#xff0c;或者说掌握的不全面&#xff0c;所以就在想怎么能够做的更好一些&#xff1f; 团队关系 其实我…...

【PYTORCH】官方的turoria实现中英文翻译

参考 https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 背景 pytorch官方的是seq2seq是法语到英文&#xff0c;做了一个中文到英文的。 数据集 下载后解压&#xff0c;使用的data\testsets\devset\UNv1.0.devset.zh和UNv1.0.devset.en&#x…...

【算法与数据结构】并查集详解+题目

目录 一&#xff0c;什么是并查集 二&#xff0c;并查集的结构 三&#xff0c;并查集的代码实现 1&#xff0c;并查集的大致结构和初始化 2&#xff0c;find操作 3&#xff0c;Union操作 4&#xff0c;优化 小结&#xff1a; 四&#xff0c;并查集的应用场景 省份…...

【动态路由】系统web url整合系列【springcloud-gateway实现】【不改hosts文件版】组件一:多个Eureka路由过滤器

需求 实现URL web资源整合&#xff0c;实现使用一个web地址访问多个web资源 方案 本方案使用SpringCloud Gateway实现&#xff0c;不需要在hosts文件加添加域名映射&#xff08;也不需要定义一系列域名&#xff09;&#xff0c;通过url路径来将请求转发到不同的Web资源 如&…...

Mybatis-扩展功能

逻辑删除乐观锁 MyBatisPlus从入门到精通-3&#xff08;含mp代码生成器&#xff09; Db静态工具类 Spring依赖循环问题 代码生成器 MybatisPlus代码生成器 枚举处理器 我们这里用int来存储状态 需要注解&#xff0c;很不灵活 希望用枚举类来代替这个Integer 这样的话我…...

基于SpringBoot实现的大学社团平台系统实现功能六

一、前言介绍&#xff1a; 1.1 项目摘要 随着高校社团活动的日益丰富和多样化&#xff0c;学生对于社团管理和参与的需求也在不断增加。传统的社团管理方式往往存在效率低下、信息不透明等问题&#xff0c;无法满足现代学生对于便捷、高效社团管理的需求。因此&#xff0c;利…...

电子电气架构 --- 机器学习推动车载雷达的发展

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身…...

python从入门到进去

python从入门到进去 第一章、软件和工具的安装一、安装 python 解释器二、安装 pycharm 第二章、初识 python一、注释可分三种二、打印输入语句三、变量1、基本数据类型1.1、整数数据类型 int1.2、浮点数数据类型 float1.3、布尔数据类型 boolean1.4、字符串数据类型 string 2、…...

智能化客户画像构建管理:AI视频监控在大型商场的技术

前言&#xff1a;某商家为了优化卖场服务与营销策略&#xff0c;希望通过非侵入式手段获取客户画像&#xff0c;不仅可以帮助卖场提升服务质量、优化营销策略&#xff0c;还能通过数据驱动的方式提升销售业绩和顾客满意度&#xff0c;为卖场的长期发展奠定坚实的基础。 具体需求…...

php 拼接字符串

php 拼接字符串 .连字符"Hello, $name" 双引号内会解析变量"Hello, {$name}Doe" 使用花括号可以更明确标识变量名sprintf("Hello, %s", $name) 使用sprintfheredoc语法&#xff0c;同样支持变量的解析$html <<<EOT <p>Hello, $…...

Deepseek实用万能提问模板

一&#xff0c;背景需求约束条件 背景:提供与问题相关的时间、地点、人物、事件等信息&#xff0c;帮助 DeepSeek 更好地理解问题的情境。 需求:清晰明确地阐述你希望 DeepSeek完成的任务或提供的信息。 约束条件:可根据具体情况&#xff0c;对回答的范围、格式、字数等进行…...

MySQL、MariaDB 和 TDSQL 的区别

MySQL、MariaDB 和 TDSQL 是三种不同的数据库管理系统&#xff0c;它们在设计理念、功能、性能和使用场景上有一些显著的区别。 以下是对这三者的详细比较和介绍。 1. MySQL 概述 类型&#xff1a;关系型数据库管理系统&#xff08;RDBMS&#xff09;。开发者&#xff1a;最…...

Android车机DIY开发之软件篇(十七) Android模拟器移植Automotive

AndroidProducts.mk 路径&#xff1a; /device/generic/goldfish/pc/AndroidProducts.mk sdk_pc_x86_64.mk路径&#xff1a; /device/generic/goldfish/pc/sdk_pc_x86_64.mk sdk_car_x86_64.mk路径&#xff1a; /device/generic/goldfish/car/sdk_car_x86_64.mk BoardConfig.mk…...

[Unity角色控制专题] (借助ai)详细解析官方第三人称控制器

首先模板链接在这里&#xff0c;你可以直接下载并导入unity即可查看官方为开发者写好一套控制器 本文的ai工具用到了豆包&#xff0c;其灵活程度很高&#xff0c;总结能力也强过我太多 因此大量使用&#xff0c;不喜勿喷 Starter Assets - ThirdPerson | Updates in new Charac…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...