C++自研游戏引擎-碰撞检测组件-八叉树AABB检测算法实现
八叉树碰撞检测是一种在三维空间中高效处理物体碰撞检测的算法,其原理可以类比为一个管理三维空间物体的智能系统。这个示例包含两个部分:八叉树部分用于宏观检测,AABB用于微观检测。AABB可以更换为均值或节点检测来提高检测精度。
八叉树的构建
- 确定根节点范围
首先要为整个碰撞检测系统确定一个初始范围,这就像是为所有参与碰撞检测的物体划定一个 “活动区域”。这个范围是一个能够完全容纳所有待检测物体的三维立方体空间,它构成了八叉树的根节点。 - 递归分割空间
为了更高效地管理和查找物体,八叉树会对这个初始的大立方体空间进行递归分割。具体做法是沿着三个坐标轴的中点,将大立方体分割成八个小立方体,每个小立方体对应根节点的一个子节点。之后,系统会检查每个子节点所包含的物体数量:
若某个子节点中的物体数量小于预设的阈值,就认为该区域内的物体分布较为稀疏,无需再进行分割,这些物体就存储在该节点中。
若物体数量超过阈值,说明该区域物体较为密集,需要进一步细分。于是会将这个节点的空间继续分割成八个更小的子空间,并对每个子空间重复上述检查过程,直到满足停止条件。
碰撞检测过程 - 插入物体
在将物体的轴对齐包围盒(AABB)插入八叉树时,系统会从根节点开始判断物体的 AABB 与当前节点的空间是否相交:
如果不相交,表明该物体不在当前节点所管理的空间范围内,无需在此节点存储该物体。
如果相交,则将物体插入当前节点。若当前节点已经被分割成子节点,系统会进一步判断物体的 AABB 与哪个子节点的空间相交,并将物体插入对应的子节点中。 - 查询碰撞
当需要检测某个物体(用其 AABB 表示)是否与其他物体发生碰撞时,系统会从八叉树的根节点开始查询:
若该物体的 AABB 与当前节点的空间不相交,说明该节点及其子节点中的物体都不可能与该物体发生碰撞,无需继续检查该节点及其子树。
若相交,则检查当前节点中存储的物体的 AABB 与该物体的 AABB 是否相交。
若当前节点有子节点,系统会递归地对每个子节点进行相同的查询操作,直到遍历完所有可能发生碰撞的节点。
八叉树碰撞检测的优缺点
优点
高效性:通过对三维空间进行递归分割,八叉树将碰撞检测的范围缩小到可能发生碰撞的区域,避免了对所有物体进行两两比较,从而显著减少了不必要的计算,提高了碰撞检测的效率。在处理大量物体的场景中,这种优势更为明显。
适应性:八叉树能够根据物体在空间中的实际分布情况自适应地进行空间划分,对于物体分布不均匀的场景也能有效地组织和管理物体。
缺点
构建和维护成本较高:构建八叉树需要对空间进行递归分割,并将物体分配到相应的节点中,这需要一定的时间和空间开销。特别是在物体频繁移动或新增、删除物体的场景中,需要不断更新八叉树的结构,增加了维护成本。
存在精度问题:使用 AABB 来近似表示物体可能会导致一定的精度损失,尤其是对于形状复杂的物体,AABB 可能无法精确地描述其外形,从而产生误判。
C++代码
#include <iostream>
#include <vector>
#include <memory>// 定义三维向量结构体
struct Vec3 {float x, y, z;Vec3(float x = 0, float y = 0, float z = 0) : x(x), y(y), z(z) {}
};// 定义 AABB 结构体
struct AABB {Vec3 min;Vec3 max;AABB(const Vec3& min, const Vec3& max) : min(min), max(max) {}// 判断两个 AABB 是否相交bool intersects(const AABB& other) const {return (min.x <= other.max.x && max.x >= other.min.x) &&(min.y <= other.max.y && max.y >= other.min.y) &&(min.z <= other.max.z && max.z >= other.min.z);}
};// 定义八叉树节点类
class OctreeNode {
public:AABB bounds;std::vector<AABB> objects;std::vector<std::unique_ptr<OctreeNode>> children;OctreeNode(const AABB& bounds) : bounds(bounds) {}// 插入 AABB 到节点中void insert(const AABB& object) {if (children.empty()) {if (objects.size() < 8) {objects.push_back(object);} else {split();insert(object);}} else {for (auto& child : children) {if (child->bounds.intersects(object)) {child->insert(object);}}}}// 分割节点void split() {Vec3 center((bounds.min.x + bounds.max.x) / 2, (bounds.min.y + bounds.max.y) / 2, (bounds.min.z + bounds.max.z) / 2);children.resize(8);children[0] = std::make_unique<OctreeNode>(AABB(bounds.min, center));children[1] = std::make_unique<OctreeNode>(AABB(Vec3(center.x, bounds.min.y, bounds.min.z), Vec3(bounds.max.x, center.y, center.z)));children[2] = std::make_unique<OctreeNode>(AABB(Vec3(bounds.min.x, center.y, bounds.min.z), Vec3(center.x, bounds.max.y, center.z)));children[3] = std::make_unique<OctreeNode>(AABB(Vec3(center.x, center.y, bounds.min.z), Vec3(bounds.max.x, bounds.max.y, center.z)));children[4] = std::make_unique<OctreeNode>(AABB(Vec3(bounds.min.x, bounds.min.y, center.z), Vec3(center.x, center.y, bounds.max.z)));children[5] = std::make_unique<OctreeNode>(AABB(Vec3(center.x, bounds.min.y, center.z), Vec3(bounds.max.x, center.y, bounds.max.z)));children[6] = std::make_unique<OctreeNode>(AABB(Vec3(bounds.min.x, center.y, center.z), Vec3(center.x, bounds.max.y, bounds.max.z)));children[7] = std::make_unique<OctreeNode>(AABB(center, bounds.max));for (const auto& object : objects) {for (auto& child : children) {if (child->bounds.intersects(object)) {child->insert(object);}}}objects.clear();}// 检测与指定 AABB 的碰撞void query(const AABB& object, std::vector<AABB>& result) const {if (bounds.intersects(object)) {for (const auto& obj : objects) {if (obj.intersects(object)) {result.push_back(obj);}}for (const auto& child : children) {child->query(object, result);}}}
};// 定义八叉树类
class Octree {
public:std::unique_ptr<OctreeNode> root;Octree(const AABB& bounds) : root(std::make_unique<OctreeNode>(bounds)) {}// 插入 AABB 到八叉树中void insert(const AABB& object) {root->insert(object);}// 检测与指定 AABB 的碰撞std::vector<AABB> query(const AABB& object) const {std::vector<AABB> result;root->query(object, result);return result;}
};// 示例使用
int main() {// 定义八叉树的边界AABB octreeBounds(Vec3(0, 0, 0), Vec3(100, 100, 100));Octree octree(octreeBounds);// 插入一些 AABBoctree.insert(AABB(Vec3(10, 10, 10), Vec3(20, 20, 20)));octree.insert(AABB(Vec3(30, 30, 30), Vec3(40, 40, 40)));// 定义一个查询的 AABBAABB queryAABB(Vec3(15, 15, 15), Vec3(25, 25, 25));// 进行碰撞检测std::vector<AABB> collisions = octree.query(queryAABB);// 输出碰撞结果std::cout << "Collisions found: " << collisions.size() << std::endl;for (const auto& collision : collisions) {std::cout << "Collision: min(" << collision.min.x << ", " << collision.min.y << ", " << collision.min.z << "), max("<< collision.max.x << ", " << collision.max.y << ", " << collision.max.z << ")" << std::endl;}return 0;
}
相关文章:
C++自研游戏引擎-碰撞检测组件-八叉树AABB检测算法实现
八叉树碰撞检测是一种在三维空间中高效处理物体碰撞检测的算法,其原理可以类比为一个管理三维空间物体的智能系统。这个示例包含两个部分:八叉树部分用于宏观检测,AABB用于微观检测。AABB可以更换为均值或节点检测来提高检测精度。 八叉树的…...

spring boot对接clerk 实现用户信息获取
在现代Web应用中,用户身份验证和管理是一个关键的功能。Clerk是一个提供身份验证和用户管理的服务,可以帮助开发者快速集成这些功能。在本文中,我们将介绍如何使用Spring Boot对接Clerk,以实现用户信息的获取。 1.介绍 Clerk提供…...
一种动态地址的查询
背景 当我们注入一个进程,通过函数地址进行call时经常会遇到这样的一个问题。对方程序每周四会自动更新。更新后之前的函数地址就变化了,然后需要重新找地址。所以,我就使用了一个动态查询的方式。 第一步:先为需要call的函数生…...

周雨彤:用角色与生活,诠释审美的艺术
提到内娱审美优秀且持续在线的女演员,周雨彤绝对是其中最有代表性的一个。 独树一帜的表演美学 作为新生代演员中的实力派代表,周雨彤凭借细腻的表演和对角色的深度共情,在荧幕上留下了多个令人难忘的“出圈”形象。在《我在他乡挺好的》中…...

使用jks给空apk包签名
1、在平台官方下载空的apk包(上传应用时有提醒下载) 2、找到jdk目录,比如C:\Program Files\Java\jdk1.8\bin,并把下载的空包apk和jks文件放到bin下 3、以管理员身份运行cmd,如果不是管理员会签名失败 4、用cd定位到…...

500. 键盘行 771. 宝石与石头 简单 find接口的使用
500. 键盘行1 给你一个字符串数组 words ,只返回可以使用在 美式键盘 同一行的字母打印出来的单词。键盘如下图所示。 请注意,字符串 不区分大小写,相同字母的大小写形式都被视为在同一行。 美式键盘 中: 第一行由字符 "qwer…...

仙剑世界手游新手攻略 仙剑世界能用云手机玩吗
欢迎来到《仙剑世界》手游的仙侠世界!作为新手玩家,以下是一些详细的攻略和建议,帮助你快速上手并享受游戏的乐趣。 一、新手职业推荐 1.轩辕:这是一个偏辅助的职业,可以给队友提供输出加成等增益效果,不过…...
[题解]2024CCPC重庆站-小 C 的神秘图形
Sources:K - 小 C 的神秘图形Abstract:给定正整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1\le n\le 10^5) n(1≤n≤105),三进制字符串 n 1 , n 2 ( ∣ n 1 ∣ ∣ n 2 ∣ n ) n_1,n_2(|n_1||n_2|n) n1,n2(∣n1∣∣n2∣n),按如下方法…...

NPS内网穿透SSH使用手册
1、说明 nps-一款轻量级、高性能、功能强大的内网穿透代理服务器 github地址:https://github.com/ehang-io/nps 官网文档地址:https://ehang-io.github.io/nps/#/?idnps 2、服务端 下载地址:https://github.com/ehang-io/nps/releases 下…...

大幂计算和大阶乘计算【C语言】
大幂计算: #include<stdio.h> long long int c[1000000]{0}; int main() {long long a,b,x1;c[0]1;printf("请输入底数:");scanf("%lld",&a);printf("请输入指数:");scanf("%lld",&b…...

【Linux】详谈 进程控制
目录 一、进程是什么 二、task_struct 三、查看进程 四、创建进程 4.1 fork函数的认识 4.2 2. fork函数的返回值 五、进程终止 5.1. 进程退出的场景 5.2. 进程常见的退出方法 5.2.1 从main返回 5.2.1.1 错误码 5.2.2 exit函数 5.2.3 _exit函数 5.2.4 缓冲区问题补…...
Linux top 命令
作用 top 是一个实时系统监控工具,用于查看系统的资源使用情况和进程状态。 示例 以下是一些常用的 top 命令示例: top :动态显示结果,每 3 秒刷新一次。 top -d 2:动态显示结果,每 2 秒刷新一次。 top …...

Leetcode 424-替换后的最长重复字符
给你一个字符串 s 和一个整数 k 。你可以选择字符串中的任一字符,并将其更改为任何其他大写英文字符。该操作最多可执行 k 次。 在执行上述操作后,返回 包含相同字母的最长子字符串的长度。 题解 可以先做LCR 167/Leetcode 03再做本题 滑动窗口&…...

《StyleDiffusion:通过扩散模型实现可控的解耦风格迁移》学习笔记
paper:2308.07863 目录 摘要 1、介绍 2、相关工作 2.1 神经风格迁移(NST) 2.2 解耦表示学习(DRL) 2.3 扩散模型(Diffusion Models) 3、方法 3.1 风格移除模块 3.2 风格转移模块 3.3 …...

Django 创建表时 “__str__ ”方法的使用
在 Django 模型中,__str__ 方法是一个 Python 特殊方法(也称为“魔术方法”),用于定义对象的字符串表示形式。它的作用是控制当对象被转换为字符串时,应该返回什么样的内容。 示例: 我在初学ModelForm时尝…...
图像处理之CSC
CSC 是 Color Space Conversion(色彩空间转换)的缩写,它涉及图像处理中的亮度、饱和度、对比度和色度等参数的调整。这些参数是图像处理中的核心概念,通常用于描述和操作图像的颜色信息。 以下是亮度、饱和度、对比度和色度与 CS…...
C语言数组之二维数组
C语言 主要内容 数组 二维数组 数组 二维数组 定义 二维数组本质上是一个行列式的组合,也就是说二维数组由行和列两部分组成,属于多维数组。二维数组数据是通过行列进行解读。二维数组可被视为一个特殊的一维数组,相当于二维数组又是一…...

PyTorch 源码学习:阅读经验 代码结构
分享自己在学习 PyTorch 源码时阅读过的资料。本文重点关注阅读 PyTorch 源码的经验和 PyTorch 的代码结构。因为 PyTorch 不同版本的源码实现有所不同,所以笔者在整理资料时尽可能按版本号升序,版本号见标题前[]。最新版本的源码实现还请查看 PyTorch 仓…...
vite+vue3开发低版本浏览器不支持es6语法的问题排坑笔记
重要提示:请首先完整阅读完文章内容后再操作,以免不必要的时间浪费!切记!!!在使用vitevue3开发unapp项目时,发现低版本浏览器不兼容es6的语法,如“?.” “??” 等,为了…...
C语言中printf()函数,格式输出符
在 C 语言中,printf() 函数的格式输出符(格式说明符)用于控制输出的格式和数据类型。以下是常见的格式说明符及其用法: 基本格式符 打印各种类型的值 格式输出符数据类型说明%dint输出有符号十进制整数%uunsigned int输出无符号…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...