当前位置: 首页 > news >正文

《DeepSeek训练算法:开启高效学习的新大门》

在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。

一、独特的架构基础

DeepSeek以Transformer架构为基石 ,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数据时,能关注到不同位置的信息,从而更好地捕捉语义依赖。DeepSeek在此基础上,对注意力机制进行优化,比如采用多头部注意力机制,使模型可以从不同角度捕捉数据特征,就像拥有多个不同视角的观察者,共同对数据进行分析,极大提升了模型对复杂语言结构和语义的理解能力。

二、混合专家(MoE)模型

DeepSeek引入混合专家模型,这是其训练算法的一大亮点。在MoE模型中,一个Transformer层包含多个专家模块 ,就像一个由各领域专家组成的智囊团。在处理任务时,模型会根据输入数据的特点,动态分配任务给最合适的专家,激活部分参数进行计算。例如在DeepSeek-V3中,每个Transformer层有256个专家和1个共享专家,总共6710亿参数,但每次token仅激活8个专家(370亿参数)。这种方式不仅有效减少了计算量,降低训练成本,还提升了模型的灵活性和泛化能力,让模型在面对不同类型的语言任务时,都能找到最佳的处理方式 。

三、低精度训练技术之FP8的创新应用

DeepSeek在训练中创新性地使用了FP8(8位浮点)技术,这在大规模语言模型训练中具有开创性。

  • 细粒度量化策略:为解决FP8动态范围有限导致的溢出和下溢问题,DeepSeek将激活值按1x128 tile分组并缩放(每个token对应128个通道),权重按128x128 block分组并缩放 。相比传统的张量级量化,这种细粒度处理方式能更好地应对异常值,提高量化精度。

  • 提升累加精度:在通用矩阵乘法(GEMM)中,DeepSeek将部分结果定期提升到FP32寄存器进行累加,有效减少了因低比特宽度累加在张量核心中产生的误差,保证了计算的准确性。

  • 统一的E4M3格式:摒弃以往前向传播用E4M3、反向传播用E5M2的混合格式,DeepSeek统一采用E4M3格式。通过细粒度量化,实现元素间指数位共享,简化训练框架,提升训练效果。

  • 在线量化:训练时,DeepSeek动态计算每个1x128激活tile或128x128权重block的缩放因子,无需依赖历史最大值的延迟量化方法,简化了框架,还提高了模型精度 。

四、优化的训练流程

1. 海量优质数据:DeepSeek在训练前,会收集海量、多样且高质量的语料数据,涵盖多种领域和语言,像新闻资讯、学术论文、文学作品等,为模型学习丰富的语言表达和知识体系提供了充足的养分。

2. 预训练与微调结合:先在大规模通用语料上进行预训练,让模型学习到通用的语言知识和语义理解能力。然后,针对特定任务或领域,使用相关数据进行微调,使模型在保持通用性的同时,提升在特定场景下的表现。例如在代码生成任务中,使用大量代码数据对模型进行微调,让它能更好地理解和生成代码。

3. 强化学习与人类反馈:利用强化学习从人类反馈(RLHF)机制,根据人类对模型输出的评估和反馈,进一步优化模型。比如,模型生成文本后,人类评估其准确性、相关性和逻辑性,反馈给模型,模型通过强化学习调整参数,使生成结果更符合人类期望 。

五、高效的训练并行策略

为了充分利用计算资源,加快训练速度,DeepSeek采用了多种并行训练策略 。

  • 数据并行:将训练数据分割成多个部分,分配到不同的计算节点上并行处理。每个节点计算自己部分数据的梯度,然后进行同步更新,减少了单节点的计算负担,提高训练效率。

  • 流水线并行:把模型的不同层分配到不同节点,各节点像流水线一样依次处理数据,在时间上重叠计算,提高了计算资源的利用率,加快了整体训练速度。

  • 张量切片模型并行:将模型中的张量按维度切片,分布到不同节点上进行计算,适用于处理大规模模型,避免单个节点内存不足的问题 。

DeepSeek的训练算法通过独特的架构设计、创新的技术应用、优化的训练流程和高效的并行策略,为模型的高效学习提供了坚实保障。这些技术的融合,不仅让DeepSeek在性能上表现出色,也为大语言模型的发展提供了新的思路和方向,相信在未来,DeepSeek还会不断进化,在人工智能领域创造更多可能 。

相关文章:

《DeepSeek训练算法:开启高效学习的新大门》

在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学…...

promise用法总结以及手写promise

JavaScript中的 Promise 是用于处理异步操作的对象,它代表了一个异步操作的最终完成(或失败)及其结果值。Promise 是异步编程的一种更简洁和更可读的方式,避免了回调地狱的问题。 Promise 的基本概念 一个 Promise 是一个表示异步…...

春招项目=图床+ k8s 控制台(唬人专用)

1. 春招伊始 马上要春招了,一个大气的项目(冲击波项目)直观重要,虽然大家都说基础很重要,但是一个足够新颖的项目完全可以把你的简历添加一个足够闪亮的点。 这就不得不推荐下我的 k8s 图床了,去年折腾快…...

Android 11.0 系统settings添加ab分区ota升级功能实现二

1.概述 在11.0的系统rom定制化开发中,在进行系统ota升级的功能中,在10.0以前都是使用系统 RecoverySystem的接口实现升级的,现在可以实现AB分区模式来进行ota升级的,但是 必须需要系统支持ab分区升级的模式才可以的,接下来分析下看怎么样进行ota升级功能实现 2.系统sett…...

【Spring+MyBatis】_图书管理系统(上篇)

目录 1. MyBatis与MySQL配置 1.1 创建数据库及数据表 1.2 配置MyBatis与数据库 1.2.1 增加MyBatis与MySQL相关依赖 1.2.2 配置application.yml文件 1.3 增加数据表对应实体类 2. 功能1:用户登录 2.1 约定前后端交互接口 2.2 后端接口 2.3 前端页面 2.4 单…...

什么是3D视觉无序抓取?

3D视觉无序抓取是一种结合三维视觉技术、机器人控制与智能算法的工业自动化解决方案,旨在实现机器人对散乱、无序堆放的物体进行自主识别、定位和抓取的操作。其核心是通过3D视觉系统获取物体的三维空间信息,结合路径规划与避障算法,引导机械臂完成高精度抓取任务,无需依赖…...

【Java】理解字符串拼接与数值运算的优先级

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 💯前言💯代码分析1. 第一句输出2. 第二句输出3. 第三句输出 💯关键概念与深入分析1. 字符串拼接的优先级2. 运算符的优先级与结合性3. 字符串拼接与数值运算的结合 &…...

[250217] x-cmd 发布 v0.5.3:新增 DeepSeek AI 模型支持及飞书/钉钉群机器人 Webhook 管理

目录 X-CMD 发布 v0.5.3📃Changelog🧩 deepseek🧩 feishu|dingtalk📦 x-cmd✅ 升级指南 X-CMD 发布 v0.5.3 📃Changelog 🧩 deepseek 新增 deepseek 模块,用户可通过 deepseek 直接请求使用 …...

渗透利器:Burp Suite 联动 XRAY 图形化工具.(主动扫描+被动扫描)

Burp Suite 联动 XRAY 图形化工具.(主动扫描被动扫描) Burp Suite 和 Xray 联合使用,能够将 Burp 的强大流量拦截与修改功能,与 Xray 的高效漏洞检测能力相结合,实现更全面、高效的网络安全测试,同时提升漏…...

Linux、Docker与Redis核心知识点与常用命令速查手册

Linux、Docker与Redis核心知识点与常用命令速查手册 一、Linux基础核心 1. 核心概念 文件系统:采用树形结构,根目录为/权限机制:rwx(读/写/执行)权限,用户分为owner/group/others软件包管理: …...

DeepSeek HuggingFace 70B Llama 版本 (DeepSeek-R1-Distill-Llama-70B)

简简单单 Online zuozuo :本心、输入输出、结果 文章目录 DeepSeek HuggingFace 70B Llama 版本 (DeepSeek-R1-Distill-Llama-70B)前言vllm 方式在本地部署 DeepSeek-R1-Distill 模型SGLang 方式在本地部署 DeepSeek-R1-Distill 模型DeepSeek-R1 相关的 Models,以及 Huggin…...

Playwright入门之---命令

运行和调试测试 使用 Playwright,您可以运行单个测试、一组测试或所有测试。可以使用--project标志在一个或多个浏览器上运行测试。默认情况下,测试并行运行,并以无头方式运行,这意味着在运行测试时不会打开任何浏览器窗口&#…...

Java基于 SpringBoot+Vue的微信小程序跑腿平台V2.0(附源码,文档)

博主介绍:✌Java徐师兄、7年大厂程序员经历。全网粉丝13w、csdn博客专家、掘金/华为云等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇🏻 不…...

Fastapi + vue3 自动化测试平台(5)-- 封装树形结构列表生成器

使用FastAPI封装树形结构生成函数:高效处理层级数据 在Web开发中,树形结构是一种常见的数据组织形式,常用于菜单、分类、组织结构等场景。本文将介绍如何使用FastAPI封装一个通用的树形结构生成函数,支持动态选择字段&#xff0c…...

【项目实战】日志管理和异步任务处理系统

这是一个高效的日志管理和异步任务处理系统,提供了多级别的日志记录、灵活的日志格式化和多种日志输出目标(控制台、文件、文件滚动)。通过异步任务循环器和线程安全的任务队列,系统能够在高并发环境下处理任务,同时避…...

CViewState::InitializeColumns函数分析之_hdsaColumnStates的结构

CViewState::InitializeColumns函数分析之_hdsaColumnStates的结构 // Set up saved column state only if the saved state // contains information other than "nothing". if (_hdsaColumnStates) { UINT cStates DSA_GetItemCount(_hdsaColumnS…...

WPF-数据转换器

一、单值转换器 1.不传参数 转换器 当Value值大于100时返回红色 public class DataConverter : IValueConverter{/// <summary>/// 表示从源到目标数据转换/// </summary>/// <param name"value">数据源的值</param>/// <param name&q…...

09 解决方案 - 开源机器人+具身智能+AI

开源机器人、具身智能(Embodied Intelligence)以及AI技术的结合,可以为机器人领域带来全新的解决方案。以下是这一结合的可能方向和具体方案: 1. 开源机器人平台 开源机器人平台为开发者提供了灵活的基础架构,可以在此基础上结合具身智能和AI技术。以下是一些常用的开源机…...

2025 BabitMF 第一期开源有奖活动正式开启 !

为了促进开源社区的交流与成长&#xff0c;字节跳动开源的多媒体处理框架 BabitMF &#xff08;GitHub - BabitMF/bmf: Cross-platform, customizable multimedia/video processing framework. With strong GPU acceleration, heterogeneous design, multi-language support, e…...

项目管理十大领域是哪些

项目管理的十大领域包括&#xff1a;整合管理、范围管理、时间管理、成本管理、质量管理、人力资源管理、沟通管理、风险管理、采购管理、干系人管理。这些领域构成了一个完整的项目管理框架&#xff0c;每个领域都扮演着至关重要的角色&#xff0c;帮助项目经理有效管理项目的…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...

Tauri2学习笔记

教程地址&#xff1a;https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引&#xff1a;https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多&#xff0c;我按照Tauri1的教程来学习&…...

深入理解 React 样式方案

React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...

CMS内容管理系统的设计与实现:多站点模式的实现

在一套内容管理系统中&#xff0c;其实有很多站点&#xff0c;比如企业门户网站&#xff0c;产品手册&#xff0c;知识帮助手册等&#xff0c;因此会需要多个站点&#xff0c;甚至PC、mobile、ipad各有一个站点。 每个站点关联的有站点所在目录及所属的域名。 一、站点表设计…...

el-amap-bezier-curve运用及线弧度设置

文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 ‌el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。‌ 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...

Linux【5】-----编译和烧写Linux系统镜像(RK3568)

参考&#xff1a;讯为 1、文件系统 不同的文件系统组成了&#xff1a;debian、ubuntu、buildroot、qt等系统 每个文件系统的uboot和kernel是一样的 2、源码目录介绍 目录 3、正式编译 编译脚本build.sh 帮助内容如下&#xff1a; Available options: uboot …...

【Java基础】​​向上转型(Upcasting)和向下转型(Downcasting)

在面向对象编程中&#xff0c;转型&#xff08;Casting&#xff09; 是指改变对象的引用类型&#xff0c;主要涉及 继承关系 和 多态。 向上转型&#xff08;Upcasting&#xff09; ⬆️ 定义 将 子类对象 赋值给 父类引用&#xff08;自动完成&#xff0c;无需强制转换&…...