【实战项目】BP神经网络识别人脸朝向----MATLAB实现
- (꒪ꇴ꒪ ),Hello我是祐言QAQ
- 我的博客主页:C/C++语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍
- 快上🚘,一起学习,让我们成为一个强大的攻城狮!
- 送给自己和读者的一句鸡汤🤔:集中起来的意志可以击穿顽石!
- 作者水平很有限,如果发现错误,请在评论区指正,感谢🙏
一 、必备知识
1.2 BP神经网络简介
BP(back propagation)神经网络是1986年由Rumelhar和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一,它是一种多层前向网络,由输入层、输出层、隐含层(可以是一层或多层)构成,一种典型的三层BP神经网络模型如图1所示。反向传播算法的主要思想是把学习过程分为2个阶段:第1阶段(正向传播过程),输入信息从输入层开始逐层计算个单元的实际输出值,每一层神经元的状态只对下一层神经元的状态产生影响;第2阶段(反向传输过程),若在输出层未能够得到期望的输出值,则逐层递归计算实际输出与期望输出之间的差值,根据此误差修正前层权值使误差信号趋向最小。它通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差变化而逐渐逼近目标。每次权值和误差的变化都与网络误差的影响成正比。

图1 经典三层BP网络模型图
1.2 实验要求
利用BP神经网络的理论知识,对图像中人脸朝向判别进行实验研究。实验采用Matlab工具箱进行BP网络设计,实现对人脸角度方向的判别,讨论输入和目标向量设计BP神经网络结构的设计,以及网络参数和训练参数的设定等问题。最终实现BP神经网络可以根据输入图像的二值化等信息,对于给出的人脸图像中的人脸是朝向左、左前、前、右前或右进行识别。
二、实验原理
2.1 基本原理
人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。
基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
接下来详细了解下信号的前向传播过程以及误差的反向传播过程:


2.1 BP网络的特点
BP网络总括起来,具有以下主要优点:
(1)只要有足够多的隐含层和隐节点,BP网络可以逼近任意的非线性映射关系;
(2)BP网络的学习算法属于全局逼近的方法,因而它具有较好的泛化能力。
它的主要缺点是:
(1)收敛速度慢;
(2)局部极值;
(3)难以确定隐含层和隐节点的个数。
从原理上,只要有足够多的隐含层和隐节点,即可实现复杂的映射关系,但是如何根据特定的问题来具体确定网络的结构尚无很好的方法,仍需要凭借经验和试凑。
BP网络能够实现输入/输出的非线性映射关系,但它并不依赖于模型。其输入与输出之间的关联信息分散地存储于连接权中。由于连接权的个数很多,个别神经元的损坏只对输入/输出关系有较小的影响,因此BP网络显示了较好的容错性。
三、实验结果
4.1 训练过程





4.2 测试结果

测试结果:


四、实验总结
通过本次实验我们更加深入的学习到BP神经网络的理论知识,掌握BP神经网络的算法原理以及如何在MATLAB中实现利用MATLAB完成BP神经网络实现人脸朝向分类的程序编写,这也使得我们掌握了在MATLAB中实现一些小型程序的编写能力,实验中我们不妨有一些知识是在课本上没有学习到的,因此我们在实验初期查阅了很多关于BP神经网络的资料,以及如何在MATLAB中实现BP神经网络的代码,当然我们也遇到了一些问题,比如,设置参数问题中,到底是运行越多越好呢还是达到目的就好,也做了很多查阅和讨论。
更多C/C++语言、Linux系统、数据结构和ARM板实战相关文章,关注专栏:
手撕C语言
玩转linux
脚踢数据结构
系统、网络编程
探索C++
6818(ARM)开发板实战
📢写在最后
- 今天的分享就到这啦~
- 觉得博主写的还不错的烦劳
一键三连喔~ - 🎉🎉🎉感谢关注🎉🎉🎉
相关文章:
【实战项目】BP神经网络识别人脸朝向----MATLAB实现
(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍快上🚘,一起学习,让我们成为一个强大的攻城狮࿰…...
java数据结构_二叉树_5.5
2.7 二叉树的相关操作 1. size方法 获取二叉树元素个数 思路:遍历思路,在前面文章中,前序 中序 后序遍历的时候,会把树中的所有结点遍历一次。可以添加一个计数器,遍历一个结点就加一次。 于是有如下代码࿱…...
Deepseek-R1推理模型API接入调用指南 ChatGPT Web Midjourney Proxy 开源项目接入Deepseek教程
DeepSeek-R1和OpenAI o1模型都属于推理任务模型,两个模型各有优点:DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能…...
计算机网络(4)TCP断开
1、TCP 断开连接四次挥手流程 TCP 断开连接是通过四次挥手方式。双方都可以主动断开连接,断开连接后主机中的「资源」将被释放。 2、为什么 TIME_WAIT 等待的时间是 2MSL? 3、为什么需要 TIME_WAIT 状态? 4、拔掉网线后, 原本的 …...
科技云报到:科技普惠潮流渐起,“开源”将带我们走向何方?
科技云报到原创。 开源决定软件未来,已成为全球技术和产业创新的主导模式之一。“开源”思想的诞生,可以说是计算机发展史中极具理想主义和浪漫主义色彩的一页,是科技自由与技术极客思想的延伸。 数字化浪潮奔涌,从软件开发的底…...
【论文笔记】On Generative Agents in Recommendation
论文信息 标题: On Generative Agents in Recommendation 会议: SIGIR 24 —— CCF-A 作者: An Zhang, Yuxin Chen, Leheng Sheng 文章链接: On Generative Agents in Recommendation 代码链接: On Generative Agents…...
使用 Spring Boot 和 Canal 实现 MySQL 数据库同步
文章目录 前言一、背景二、Canal 简介三、主库数据库配置1.主库配置2.创建 Canal 用户并授予权限 四.配置 Canal Server1.Canal Server 配置文件2.启动 Canal Server 五.开发 Spring Boot 客户端1. 引入依赖2. 配置 Canal 客户端3. 实现数据同步逻辑 六.启动并测试七.注意事项八…...
vue3 在element-plus表格使用render-header
在vue2中 element表格render-header 源码是有返回h()函数的 在vue3 element-plus 表格源码 render-header函数没有返回h函数了 所以需要用render-header方法中创建虚拟DOM节点的话需要引用h方法 <el-table-column header-align"right" align"right" …...
算法——结合实例了解Minimax算法(极小化极大算法)
计算机科学中最有趣的事情之一就是编写一个人机博弈的程序。有大量的例子,最出名的是编写一个国际象棋的博弈机器。但不管是什么游戏,程序趋向于遵循一个被称为Minimax算法,伴随着各种各样的子算法在一块。本篇将简要介绍 minimax 算法&#…...
使用 DeepSeek 生成商城流程图
步骤 1.下载 mermaid 2.使用 DeepSeek 生成 mermaid 格式 3.复制内容到 4.保存备用。 结束。...
什么是GraphQL?
如果你在寻找漏洞利用方式,请参考下面的文章 GraphQL API 漏洞 |网络安全学院 GitHub - swisskyrepo/PayloadsAllTheThings: A list of useful payloads and bypass for Web Application Security and Pentest/CTF GraphQL 查询(Query) GraphQL 既不是…...
Spring Boot 的约定优于配置,你的理解是什么?
Spring Boot 的“约定优于配置”:开发效率的革命性提升 在软件开发中,开发者常常需要花费大量时间编写繁琐的配置文件,尤其是在传统的 Java EE 或 Spring 框架中。而 Spring Boot 通过“约定优于配置”(Convention Over Configur…...
C#开源大型商城系统之B2B2C+O2O一体化_OctShop
一、应用背景与引言 在当今数字化商业的浪潮中,电子商务平台的构建成为众多企业拓展业务、提升竞争力的关键举措。C# 语言以其强大的功能、高效的性能以及良好的开发框架支持,在商城系统开发领域占据着重要地位。独立开源的大型 C# 商城系统,…...
gitte远程仓库修改后,本地没有更新,本地与远程仓库不一致
问题 :gitte远程仓库修改后,本地没有更新,本地与远程仓库不一致 现象: [cxqiZwz9fjj2ssnshikw14avaZ rpc]$ git push Username for https://gitee.com: beihangya Password for https://beihangyagitee.com: To https://gitee.c…...
【对比】Pandas 和 Polars 的区别
Pandas vs Polars 对比表 特性PandasPolars开发语言Python(Cython 实现核心部分)Rust(高性能系统编程语言)性能较慢,尤其在大数据集上(内存占用高,计算效率低)极快,利用…...
el-input无法输入0.0001的小数,自动转换为0在vue3中的bug
今天遇到个bug,el-input中只能输入0.1或者输入0.1再加上00成为0.001,不能直接输入0.001,否则自动转换为0。需要去掉 v-model.number后面的 .number 源代码: <el-table-column label"实发数量" width"120"…...
Ubuntu 下 systemd 介绍
系列文章目录 Linux内核学习 Linux 知识(1) Linux 知识(2) WSL Ubuntu QEMU 虚拟机 Linux 调试视频 PCIe 与 USB 的补充知识 vscode 使用说明 树莓派 4B 指南 设备驱动畅想 Linux内核子系统 Linux 文件系统挂载 QEMU 通过网络实现…...
BERT文本分类(PyTorch和Transformers)畅用七个模型架构
(PyTorch)BERT文本分类:七种模型架构 🌟 1. 介绍 使用BERT完成文本分类任务(如情感分析,新闻文本分类等等)对于NLPer已经是很基础的工作了!虽说已迈入LLM时代,但是BERT…...
两步在 Vite 中配置 Tailwindcss
第一步:安装依赖 npm i -D tailwindcss tailwindcss/vite第二步:引入 tailwindcss 更改配置 // src/main.js import tailwindcss/index// vite.config.js import vue from vitejs/plugin-vue import tailwindcss from tailwindcss/viteexport default …...
【vmware虚拟机安装教程】
以下是在VMware Workstation Pro上安装虚拟机的详细教程: 准备工作 下载VMware Workstation Pro 访问VMware官网下载并安装VMware Workstation Pro(支持Windows和Linux系统)。安装完成后,确保已激活软件(试用版或正式…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
