【实战项目】BP神经网络识别人脸朝向----MATLAB实现
- (꒪ꇴ꒪ ),Hello我是祐言QAQ
- 我的博客主页:C/C++语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍
- 快上🚘,一起学习,让我们成为一个强大的攻城狮!
- 送给自己和读者的一句鸡汤🤔:集中起来的意志可以击穿顽石!
- 作者水平很有限,如果发现错误,请在评论区指正,感谢🙏
一 、必备知识
1.2 BP神经网络简介
BP(back propagation)神经网络是1986年由Rumelhar和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一,它是一种多层前向网络,由输入层、输出层、隐含层(可以是一层或多层)构成,一种典型的三层BP神经网络模型如图1所示。反向传播算法的主要思想是把学习过程分为2个阶段:第1阶段(正向传播过程),输入信息从输入层开始逐层计算个单元的实际输出值,每一层神经元的状态只对下一层神经元的状态产生影响;第2阶段(反向传输过程),若在输出层未能够得到期望的输出值,则逐层递归计算实际输出与期望输出之间的差值,根据此误差修正前层权值使误差信号趋向最小。它通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差变化而逐渐逼近目标。每次权值和误差的变化都与网络误差的影响成正比。
图1 经典三层BP网络模型图
1.2 实验要求
利用BP神经网络的理论知识,对图像中人脸朝向判别进行实验研究。实验采用Matlab工具箱进行BP网络设计,实现对人脸角度方向的判别,讨论输入和目标向量设计BP神经网络结构的设计,以及网络参数和训练参数的设定等问题。最终实现BP神经网络可以根据输入图像的二值化等信息,对于给出的人脸图像中的人脸是朝向左、左前、前、右前或右进行识别。
二、实验原理
2.1 基本原理
人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。
基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
接下来详细了解下信号的前向传播过程以及误差的反向传播过程:
2.1 BP网络的特点
BP网络总括起来,具有以下主要优点:
(1)只要有足够多的隐含层和隐节点,BP网络可以逼近任意的非线性映射关系;
(2)BP网络的学习算法属于全局逼近的方法,因而它具有较好的泛化能力。
它的主要缺点是:
(1)收敛速度慢;
(2)局部极值;
(3)难以确定隐含层和隐节点的个数。
从原理上,只要有足够多的隐含层和隐节点,即可实现复杂的映射关系,但是如何根据特定的问题来具体确定网络的结构尚无很好的方法,仍需要凭借经验和试凑。
BP网络能够实现输入/输出的非线性映射关系,但它并不依赖于模型。其输入与输出之间的关联信息分散地存储于连接权中。由于连接权的个数很多,个别神经元的损坏只对输入/输出关系有较小的影响,因此BP网络显示了较好的容错性。
三、实验结果
4.1 训练过程
4.2 测试结果
测试结果:
四、实验总结
通过本次实验我们更加深入的学习到BP神经网络的理论知识,掌握BP神经网络的算法原理以及如何在MATLAB中实现利用MATLAB完成BP神经网络实现人脸朝向分类的程序编写,这也使得我们掌握了在MATLAB中实现一些小型程序的编写能力,实验中我们不妨有一些知识是在课本上没有学习到的,因此我们在实验初期查阅了很多关于BP神经网络的资料,以及如何在MATLAB中实现BP神经网络的代码,当然我们也遇到了一些问题,比如,设置参数问题中,到底是运行越多越好呢还是达到目的就好,也做了很多查阅和讨论。
更多C/C++语言、Linux系统、数据结构和ARM板实战相关文章,关注专栏:
手撕C语言
玩转linux
脚踢数据结构
系统、网络编程
探索C++
6818(ARM)开发板实战
📢写在最后
- 今天的分享就到这啦~
- 觉得博主写的还不错的烦劳
一键三连喔
~ - 🎉🎉🎉感谢关注🎉🎉🎉
相关文章:

【实战项目】BP神经网络识别人脸朝向----MATLAB实现
(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍快上🚘,一起学习,让我们成为一个强大的攻城狮࿰…...

java数据结构_二叉树_5.5
2.7 二叉树的相关操作 1. size方法 获取二叉树元素个数 思路:遍历思路,在前面文章中,前序 中序 后序遍历的时候,会把树中的所有结点遍历一次。可以添加一个计数器,遍历一个结点就加一次。 于是有如下代码࿱…...

Deepseek-R1推理模型API接入调用指南 ChatGPT Web Midjourney Proxy 开源项目接入Deepseek教程
DeepSeek-R1和OpenAI o1模型都属于推理任务模型,两个模型各有优点:DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能…...

计算机网络(4)TCP断开
1、TCP 断开连接四次挥手流程 TCP 断开连接是通过四次挥手方式。双方都可以主动断开连接,断开连接后主机中的「资源」将被释放。 2、为什么 TIME_WAIT 等待的时间是 2MSL? 3、为什么需要 TIME_WAIT 状态? 4、拔掉网线后, 原本的 …...
科技云报到:科技普惠潮流渐起,“开源”将带我们走向何方?
科技云报到原创。 开源决定软件未来,已成为全球技术和产业创新的主导模式之一。“开源”思想的诞生,可以说是计算机发展史中极具理想主义和浪漫主义色彩的一页,是科技自由与技术极客思想的延伸。 数字化浪潮奔涌,从软件开发的底…...

【论文笔记】On Generative Agents in Recommendation
论文信息 标题: On Generative Agents in Recommendation 会议: SIGIR 24 —— CCF-A 作者: An Zhang, Yuxin Chen, Leheng Sheng 文章链接: On Generative Agents in Recommendation 代码链接: On Generative Agents…...
使用 Spring Boot 和 Canal 实现 MySQL 数据库同步
文章目录 前言一、背景二、Canal 简介三、主库数据库配置1.主库配置2.创建 Canal 用户并授予权限 四.配置 Canal Server1.Canal Server 配置文件2.启动 Canal Server 五.开发 Spring Boot 客户端1. 引入依赖2. 配置 Canal 客户端3. 实现数据同步逻辑 六.启动并测试七.注意事项八…...

vue3 在element-plus表格使用render-header
在vue2中 element表格render-header 源码是有返回h()函数的 在vue3 element-plus 表格源码 render-header函数没有返回h函数了 所以需要用render-header方法中创建虚拟DOM节点的话需要引用h方法 <el-table-column header-align"right" align"right" …...

算法——结合实例了解Minimax算法(极小化极大算法)
计算机科学中最有趣的事情之一就是编写一个人机博弈的程序。有大量的例子,最出名的是编写一个国际象棋的博弈机器。但不管是什么游戏,程序趋向于遵循一个被称为Minimax算法,伴随着各种各样的子算法在一块。本篇将简要介绍 minimax 算法&#…...

使用 DeepSeek 生成商城流程图
步骤 1.下载 mermaid 2.使用 DeepSeek 生成 mermaid 格式 3.复制内容到 4.保存备用。 结束。...
什么是GraphQL?
如果你在寻找漏洞利用方式,请参考下面的文章 GraphQL API 漏洞 |网络安全学院 GitHub - swisskyrepo/PayloadsAllTheThings: A list of useful payloads and bypass for Web Application Security and Pentest/CTF GraphQL 查询(Query) GraphQL 既不是…...
Spring Boot 的约定优于配置,你的理解是什么?
Spring Boot 的“约定优于配置”:开发效率的革命性提升 在软件开发中,开发者常常需要花费大量时间编写繁琐的配置文件,尤其是在传统的 Java EE 或 Spring 框架中。而 Spring Boot 通过“约定优于配置”(Convention Over Configur…...

C#开源大型商城系统之B2B2C+O2O一体化_OctShop
一、应用背景与引言 在当今数字化商业的浪潮中,电子商务平台的构建成为众多企业拓展业务、提升竞争力的关键举措。C# 语言以其强大的功能、高效的性能以及良好的开发框架支持,在商城系统开发领域占据着重要地位。独立开源的大型 C# 商城系统,…...
gitte远程仓库修改后,本地没有更新,本地与远程仓库不一致
问题 :gitte远程仓库修改后,本地没有更新,本地与远程仓库不一致 现象: [cxqiZwz9fjj2ssnshikw14avaZ rpc]$ git push Username for https://gitee.com: beihangya Password for https://beihangyagitee.com: To https://gitee.c…...
【对比】Pandas 和 Polars 的区别
Pandas vs Polars 对比表 特性PandasPolars开发语言Python(Cython 实现核心部分)Rust(高性能系统编程语言)性能较慢,尤其在大数据集上(内存占用高,计算效率低)极快,利用…...

el-input无法输入0.0001的小数,自动转换为0在vue3中的bug
今天遇到个bug,el-input中只能输入0.1或者输入0.1再加上00成为0.001,不能直接输入0.001,否则自动转换为0。需要去掉 v-model.number后面的 .number 源代码: <el-table-column label"实发数量" width"120"…...

Ubuntu 下 systemd 介绍
系列文章目录 Linux内核学习 Linux 知识(1) Linux 知识(2) WSL Ubuntu QEMU 虚拟机 Linux 调试视频 PCIe 与 USB 的补充知识 vscode 使用说明 树莓派 4B 指南 设备驱动畅想 Linux内核子系统 Linux 文件系统挂载 QEMU 通过网络实现…...
BERT文本分类(PyTorch和Transformers)畅用七个模型架构
(PyTorch)BERT文本分类:七种模型架构 🌟 1. 介绍 使用BERT完成文本分类任务(如情感分析,新闻文本分类等等)对于NLPer已经是很基础的工作了!虽说已迈入LLM时代,但是BERT…...

两步在 Vite 中配置 Tailwindcss
第一步:安装依赖 npm i -D tailwindcss tailwindcss/vite第二步:引入 tailwindcss 更改配置 // src/main.js import tailwindcss/index// vite.config.js import vue from vitejs/plugin-vue import tailwindcss from tailwindcss/viteexport default …...
【vmware虚拟机安装教程】
以下是在VMware Workstation Pro上安装虚拟机的详细教程: 准备工作 下载VMware Workstation Pro 访问VMware官网下载并安装VMware Workstation Pro(支持Windows和Linux系统)。安装完成后,确保已激活软件(试用版或正式…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...