4.【线性代数】——矩阵的LU分解
四 矩阵的LU分解
- 1. AB的逆矩阵
- 2. 转置矩阵
- 3. A=LU
- 3.1 2x2矩阵
- 3.2 3x3矩阵
- 3.3 nxn的矩阵分解的次数?
1. AB的逆矩阵
{ ( A B ) ( B − 1 A − 1 ) = I ( B − 1 A − 1 ) ( A B ) = I ⇒ ( A B ) − 1 = B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) = I\\ (B^{-1}A^{-1}) (AB)=I \end{cases} \Rightarrow (AB)^{-1} = B^{-1}A^{-1} {(AB)(B−1A−1)=I(B−1A−1)(AB)=I⇒(AB)−1=B−1A−1
2. 转置矩阵
A A − 1 = I ⇒ 两边同时转置 ( A A − 1 ) T = I ⇒ ( A B ) T = B T A T ( A − 1 ) T A T = I \begin{aligned} AA^{-1}=I & \newline \xRightarrow{\text{两边同时转置}} (AA^{-1})^{T}=I &\newline \xRightarrow {(AB)^T = B^TA^T} (A^{-1})^TA^T=I \end{aligned} AA−1=I两边同时转置(AA−1)T=I(AB)T=BTAT(A−1)TAT=I
转置矩阵的逆 = 逆矩阵的转置
3. A=LU
3.1 2x2矩阵
A矩阵进行消元,可以得到EA=U
[ 1 0 − 4 1 ] ⏟ E [ 2 1 8 7 ] ⏟ A = [ 2 1 0 3 ] ⏟ U \underbrace{\begin{bmatrix} 1&0\\ -4&1 \end{bmatrix}}_{E} \underbrace{\begin{bmatrix} 2&1\\ 8 &7 \end{bmatrix}}_{\text{A}}= \underbrace{\begin{bmatrix} 2&1\\ 0&3 \end{bmatrix}}_{U} E [1−401]A [2817]=U [2013]
两边同时乘以 E − 1 E^{-1} E−1,得到A=LU。其中L为下三角矩阵(lower),U为上三角矩阵(upper)。
[ 2 1 8 7 ] ⏟ A = [ 1 0 4 1 ] ⏟ L [ 2 1 0 3 ] ⏟ U \underbrace{\begin{bmatrix} 2&1\\ 8 &7 \end{bmatrix}}_{\text{A}}=\underbrace{\begin{bmatrix} 1&0\\ 4&1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} 2&1\\ 0&3 \end{bmatrix}}_{U} A [2817]=L [1401]U [2013]
3.2 3x3矩阵
样例来源于 2.【线性代数】——矩阵消元的第三部分
其中 E 21 E_{21} E21表示 r o w 2 − 3 r o w 1 row_2-3row_1 row2−3row1, E 32 E_{32} E32表示 r o w 3 − 2 r o w 2 row_3-2row_2 row3−2row2
[ 1 0 0 0 1 0 0 − 2 1 ] ⏟ E 32 [ 1 0 0 − 3 1 0 0 0 1 ] ⏟ E 21 [ 1 2 1 3 8 1 0 4 1 ] ⏟ A = [ 1 2 1 0 2 − 2 0 0 5 ] ⏟ U \underbrace{\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&-2&1\\ \end{bmatrix}}_{E_{32}} \underbrace{\begin{bmatrix} 1&0&0\\ -3&1&0\\ 0&0&1\\ \end{bmatrix}}_{E_{21}} \underbrace{\begin{bmatrix} 1&2&1\\ 3&8 &1\\ 0&4&1 \end{bmatrix}}_{\text{A}}= \underbrace{\begin{bmatrix} 1&2&1\\ 0&2&-2\\ 0&0&5 \end{bmatrix}}_{\text{U}} E32 10001−2001 E21 1−30010001 A 130284111 =U 1002201−25
A = ( E 21 ) − 1 ( E 32 ) − 1 U A=(E_{21})^{-1}(E_{32})^{-1}U A=(E21)−1(E32)−1U
逆矩阵的求法,参考 2.【线性代数】——矩阵消元的第五部分
L = [ 1 0 0 3 1 0 0 0 1 ] ⏟ ( E 21 ) − 1 [ 1 0 0 0 1 0 0 2 1 ] ⏟ ( E 32 ) − 1 = [ 1 0 0 3 1 0 0 2 1 ] L = \underbrace{\begin{bmatrix} 1&0&0\\ 3&1&0\\ 0&0&1\\ \end{bmatrix}}_{(E_{21})^{-1}} \underbrace{\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&2&1\\ \end{bmatrix}}_{(E_{32})^{-1}} =\begin{bmatrix} 1&0&0\\ \boxed{3}&1&0\\ 0&\boxed{2}&1\\ \end{bmatrix} L=(E21)−1 130010001 (E32)−1 100012001 = 130012001
为什么用L矩阵?
- 因为在不存在行交换的额情况下,消元乘数可直接写入L
3.3 nxn的矩阵分解的次数?
[ a b c d ] ⇒ [ a b c − a ∗ c a d − b ∗ c a ] , c − a ∗ c a 是一次操作。 \begin{bmatrix} a&b\\ c&d\\ \end{bmatrix} \Rightarrow \begin{bmatrix} a&b\\ c-a*{\frac c a}&d-b*{\frac c a}\\ \end{bmatrix}, \boxed{c-a*{\frac c a}}是一次操作。 [acbd]⇒[ac−a∗acbd−b∗ac],c−a∗ac是一次操作。
那么100x100的矩阵,获得第一个主元的估算操作数为 10 0 2 100^2 1002;获得第二个主元的估算操作数为 9 9 2 99^2 992;获得第三个主元的估算操作数是 9 8 2 98^2 982…
求和为 1 2 + 2 2 + . . . + n 2 ≈ 1 3 n 3 1^2+2^2+...+n^2\approx{\frac 1 3}n^3 12+22+...+n2≈31n3
相关文章:
4.【线性代数】——矩阵的LU分解
四 矩阵的LU分解 1. AB的逆矩阵2. 转置矩阵3. ALU3.1 2x2矩阵3.2 3x3矩阵3.3 nxn的矩阵分解的次数? 1. AB的逆矩阵 { ( A B ) ( B − 1 A − 1 ) I ( B − 1 A − 1 ) ( A B ) I ⇒ ( A B ) − 1 B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) I\\ (B^{-1}A^…...
【清晰教程】本地部署DeepSeek-r1模型
【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面-CSDN博客 目录 Ollama 安装Ollama DeepSeek-r1模型 安装DeepSeek-r1模型 Ollama Ollama 是一个开源工具,专注于简化大型语言模型(LLMs)的本地部署和管理。它允许用户在本地计算机…...
Spring Cloud工程搭建
目录 工程搭建 搭建父子工程 创建父工程 Spring Cloud版本 创建子项目-订单服务 声明项⽬依赖 和 项⽬构建插件 创建子项目-商品服务 声明项⽬依赖 和 项⽬构建插件 工程搭建 因为拆分成了微服务,所以要拆分出多个项目,但是IDEA只能一个窗口有一…...
使用Redis实现分布式锁,基于原本单体系统进行业务改造
一、单体系统下,使用锁机制实现秒杀功能,并限制一人一单功能 1.流程图: 2.代码实现: Service public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderSe…...
【MediaTek】 T750 openwrt-23.05编 cannot find dependency libexpat for libmesode
MediaTek T750 T750 采用先进的 7nm 制程,高度集成 5G 调制解调器和四核 Arm CPU,提供较强的功能和配置,设备制造商得以打造精巧的高性能 CPE 产品,如固定无线接入(FWA)路由器和移动热点。 MediaTek T750 平台是一款综合的芯片组,集成了 5G SoC MT6890、12nm 制程…...
CHARMM-GUI EnzyDocker: 一个基于网络的用于酶中多个反应状态的蛋白质 - 配体对接的计算平台
❝ "CHARMM-GUI EnzyDocker for Protein−Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes"介绍了 CHARMM-GUI EnzyDocker,这是一个基于网络的计算平台,旨在简化和加速 EnzyDock 对接模拟的设置过程&…...
c# 2025/2/17 周一
16. 《表达式,语句详解4》 20 未完。。 表达式,语句详解_4_哔哩哔哩_bilibili...
vite【详解】常用配置 vite.config.js / vite.config.ts
官网 https://cn.vitejs.dev/guide/ vite 常用配置 Vite 配置文件通常是 vite.config.js (使用 CommonJS 语法)或者 vite.config.ts(使用 TypeScript 语法),默认内容为 import { defineConfig } from vite import vue…...
最新智能优化算法: 阿尔法进化(Alpha Evolution,AE)算法求解23个经典函数测试集,MATLAB代码
一、阿尔法进化算法 阿尔法进化(Alpha Evolution,AE)算法是2024年提出的一种新型进化算法,其核心在于通过自适应基向量和随机步长的设计来更新解,从而提高算法的性能。以下是AE算法的主要步骤和特点: 主…...
用于可靠工业通信的5G-TSN集成原型:基于帧复制与消除可靠性的研究
论文标题 中文标题:用于可靠工业通信的5G-TSN集成原型:基于帧复制与消除可靠性的研究 英文标题:5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability 作者信息 …...
HaProxy源码安装(Rocky8)
haproxy具有高性能、高可用性、灵活的负载均衡策略和强大的将恐和日志功能,是法国开发者 威利塔罗(Willy Tarreau)在2000年使用C语言开发的一个开源软件,是一款具 备高并发(一万以上)、高性能的TCP和HTTP负载均衡器,支持基于cookie的持久性&a…...
shell脚本备份MySQL数据库和库下表
目录 注意: 一.脚本内容 二.执行效果 三.创建定时任务 注意: 以下为对MySQL5.7.42版本数据库备份shell脚本参考运行备份的机器请确认mysqldump版本>5.7,否则备份参数--set-gtid-purgedOFF无效,考虑到一般数据库节点和备份…...
23. AI-大语言模型
文章目录 前言一、LLM1. 简介2. 工作原理和结构3. 应用场景4. 最新研究进展5. 比较 二、Transformer架构1. 简介2. 基本原理和结构3. 应用场景4. 最新进展 三、开源1. 开源概念2. 开源模式3. 模型权重 四、再谈DeepSeek 前言 AI 一、LLM LLM(Large Language Mod…...
Linux /dev/null
/dev/null 是 Linux 和类 Unix 系统中一个特殊且非常有用的设备文件,也被称为空设备。下面为你详细介绍它的特点、用途和使用示例。 特点 写入丢弃:当向 /dev/null 写入数据时,这些数据会被立即丢弃,不会被保存到任何地方&#…...
Unity CommandBuffer绘制粒子系统网格显示
CommandBuffer是 Unity 提供的一种在渲染流程中插入自定义渲染命令的机制。在渲染粒子系统时,常规的渲染流程可能无法满足特定的渲染需求,而CommandBuffer允许开发者灵活地设置渲染参数、控制渲染顺序以及执行自定义的绘制操作。通过它,可以精…...
Java延时定时刷新Redis缓存
延时定时刷新Redis缓存 一、背景 项目需求:订阅接收一批实时数据,每分钟最高可接收120万条数据,并且分别更新到redis和数据库中;而用户请求查询消息只是低频操作。资源限制:由于项目预算有限,只有4台4C16…...
智能硬件定位技术发展趋势
在科技飞速进步的当下,智能硬件定位技术作为众多领域的关键支撑,正沿着多元且极具创新性的路径蓬勃发展,持续重塑我们的生活与工作方式。 一、精度提升的极致追求 当前,智能硬件定位精度虽已满足诸多日常应用,但未来…...
全单模矩阵及其在分支定价算法中的应用
全单模矩阵及其在分支定价算法中的应用 目录 全单模矩阵的定义与特性全单模矩阵的判定方法全单模矩阵在优化中的核心价值分支定价算法与矩阵单模性的关系非全单模问题的挑战与系统解决方案总结与工程实践建议 1. 全单模矩阵的定义与特性 关键定义 单模矩阵(Unimo…...
DeepSeek 的创新融合:多行业应用实践探索
引言 在数字化转型的浪潮中,技术的融合与创新成为推动各行业发展的关键力量。蓝耘平台作为行业内备受瞩目的创新平台,以其强大的资源整合能力和灵活的架构,为企业提供了高效的服务支持。而 DeepSeek 凭借先进的人工智能技术,在自然…...
利用SkinMagic美化MFC应用界面
MFC(Microsoft Foundation Class)应用程序的界面设计风格通常比较保守,而且虽然MFC框架的控件功能强大且易于集成,但视觉效果较为朴素,缺乏现代感。尤其是MFC应用程序的设计往往以功能实现为核心,界面设计可能显得较为简洁甚至略显呆板,用户体验可能不如现代应用程序流畅…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
Ubuntu系统多网卡多相机IP设置方法
目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
