当前位置: 首页 > news >正文

4.【线性代数】——矩阵的LU分解

四 矩阵的LU分解

    • 1. AB的逆矩阵
    • 2. 转置矩阵
    • 3. A=LU
      • 3.1 2x2矩阵
      • 3.2 3x3矩阵
      • 3.3 nxn的矩阵分解的次数?

1. AB的逆矩阵

{ ( A B ) ( B − 1 A − 1 ) = I ( B − 1 A − 1 ) ( A B ) = I ⇒ ( A B ) − 1 = B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) = I\\ (B^{-1}A^{-1}) (AB)=I \end{cases} \Rightarrow (AB)^{-1} = B^{-1}A^{-1} {(AB)(B1A1)=I(B1A1)(AB)=I(AB)1=B1A1

2. 转置矩阵

A A − 1 = I ⇒ 两边同时转置 ( A A − 1 ) T = I ⇒ ( A B ) T = B T A T ( A − 1 ) T A T = I \begin{aligned} AA^{-1}=I & \newline \xRightarrow{\text{两边同时转置}} (AA^{-1})^{T}=I &\newline \xRightarrow {(AB)^T = B^TA^T} (A^{-1})^TA^T=I \end{aligned} AA1=I两边同时转置 (AA1)T=I(AB)T=BTAT (A1)TAT=I
转置矩阵的逆 = 逆矩阵的转置

3. A=LU

3.1 2x2矩阵

A矩阵进行消元,可以得到EA=U
[ 1 0 − 4 1 ] ⏟ E [ 2 1 8 7 ] ⏟ A = [ 2 1 0 3 ] ⏟ U \underbrace{\begin{bmatrix} 1&0\\ -4&1 \end{bmatrix}}_{E} \underbrace{\begin{bmatrix} 2&1\\ 8 &7 \end{bmatrix}}_{\text{A}}= \underbrace{\begin{bmatrix} 2&1\\ 0&3 \end{bmatrix}}_{U} E [1401]A [2817]=U [2013]
两边同时乘以 E − 1 E^{-1} E1,得到A=LU。其中L为下三角矩阵(lower),U为上三角矩阵(upper)。
[ 2 1 8 7 ] ⏟ A = [ 1 0 4 1 ] ⏟ L [ 2 1 0 3 ] ⏟ U \underbrace{\begin{bmatrix} 2&1\\ 8 &7 \end{bmatrix}}_{\text{A}}=\underbrace{\begin{bmatrix} 1&0\\ 4&1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} 2&1\\ 0&3 \end{bmatrix}}_{U} A [2817]=L [1401]U [2013]

3.2 3x3矩阵

样例来源于 2.【线性代数】——矩阵消元的第三部分
其中 E 21 E_{21} E21表示 r o w 2 − 3 r o w 1 row_2-3row_1 row23row1, E 32 E_{32} E32表示 r o w 3 − 2 r o w 2 row_3-2row_2 row32row2
[ 1 0 0 0 1 0 0 − 2 1 ] ⏟ E 32 [ 1 0 0 − 3 1 0 0 0 1 ] ⏟ E 21 [ 1 2 1 3 8 1 0 4 1 ] ⏟ A = [ 1 2 1 0 2 − 2 0 0 5 ] ⏟ U \underbrace{\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&-2&1\\ \end{bmatrix}}_{E_{32}} \underbrace{\begin{bmatrix} 1&0&0\\ -3&1&0\\ 0&0&1\\ \end{bmatrix}}_{E_{21}} \underbrace{\begin{bmatrix} 1&2&1\\ 3&8 &1\\ 0&4&1 \end{bmatrix}}_{\text{A}}= \underbrace{\begin{bmatrix} 1&2&1\\ 0&2&-2\\ 0&0&5 \end{bmatrix}}_{\text{U}} E32 100012001 E21 130010001 A 130284111 =U 100220125
A = ( E 21 ) − 1 ( E 32 ) − 1 U A=(E_{21})^{-1}(E_{32})^{-1}U A=(E21)1(E32)1U
逆矩阵的求法,参考 2.【线性代数】——矩阵消元的第五部分
L = [ 1 0 0 3 1 0 0 0 1 ] ⏟ ( E 21 ) − 1 [ 1 0 0 0 1 0 0 2 1 ] ⏟ ( E 32 ) − 1 = [ 1 0 0 3 1 0 0 2 1 ] L = \underbrace{\begin{bmatrix} 1&0&0\\ 3&1&0\\ 0&0&1\\ \end{bmatrix}}_{(E_{21})^{-1}} \underbrace{\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&2&1\\ \end{bmatrix}}_{(E_{32})^{-1}} =\begin{bmatrix} 1&0&0\\ \boxed{3}&1&0\\ 0&\boxed{2}&1\\ \end{bmatrix} L=(E21)1 130010001 (E32)1 100012001 = 130012001
为什么用L矩阵?

  • 因为在不存在行交换的额情况下,消元乘数可直接写入L

3.3 nxn的矩阵分解的次数?

[ a b c d ] ⇒ [ a b c − a ∗ c a d − b ∗ c a ] , c − a ∗ c a 是一次操作。 \begin{bmatrix} a&b\\ c&d\\ \end{bmatrix} \Rightarrow \begin{bmatrix} a&b\\ c-a*{\frac c a}&d-b*{\frac c a}\\ \end{bmatrix}, \boxed{c-a*{\frac c a}}是一次操作。 [acbd][acaacbdbac],caac是一次操作。
那么100x100的矩阵,获得第一个主元的估算操作数为 10 0 2 100^2 1002;获得第二个主元的估算操作数为 9 9 2 99^2 992;获得第三个主元的估算操作数是 9 8 2 98^2 982
求和为 1 2 + 2 2 + . . . + n 2 ≈ 1 3 n 3 1^2+2^2+...+n^2\approx{\frac 1 3}n^3 12+22+...+n231n3

相关文章:

4.【线性代数】——矩阵的LU分解

四 矩阵的LU分解 1. AB的逆矩阵2. 转置矩阵3. ALU3.1 2x2矩阵3.2 3x3矩阵3.3 nxn的矩阵分解的次数? 1. AB的逆矩阵 { ( A B ) ( B − 1 A − 1 ) I ( B − 1 A − 1 ) ( A B ) I ⇒ ( A B ) − 1 B − 1 A − 1 \begin{cases} (AB)(B^{-1}A^{-1}) I\\ (B^{-1}A^…...

【清晰教程】本地部署DeepSeek-r1模型

【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面-CSDN博客 目录 Ollama 安装Ollama DeepSeek-r1模型 安装DeepSeek-r1模型 Ollama Ollama 是一个开源工具,专注于简化大型语言模型(LLMs)的本地部署和管理。它允许用户在本地计算机…...

Spring Cloud工程搭建

目录 工程搭建 搭建父子工程 创建父工程 Spring Cloud版本 创建子项目-订单服务 声明项⽬依赖 和 项⽬构建插件 创建子项目-商品服务 声明项⽬依赖 和 项⽬构建插件 工程搭建 因为拆分成了微服务,所以要拆分出多个项目,但是IDEA只能一个窗口有一…...

使用Redis实现分布式锁,基于原本单体系统进行业务改造

一、单体系统下&#xff0c;使用锁机制实现秒杀功能&#xff0c;并限制一人一单功能 1.流程图&#xff1a; 2.代码实现&#xff1a; Service public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderSe…...

【MediaTek】 T750 openwrt-23.05编 cannot find dependency libexpat for libmesode

MediaTek T750 T750 采用先进的 7nm 制程,高度集成 5G 调制解调器和四核 Arm CPU,提供较强的功能和配置,设备制造商得以打造精巧的高性能 CPE 产品,如固定无线接入(FWA)路由器和移动热点。 MediaTek T750 平台是一款综合的芯片组,集成了 5G SoC MT6890、12nm 制程…...

CHARMM-GUI EnzyDocker: 一个基于网络的用于酶中多个反应状态的蛋白质 - 配体对接的计算平台

❝ "CHARMM-GUI EnzyDocker for Protein−Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes"介绍了 CHARMM-GUI EnzyDocker&#xff0c;这是一个基于网络的计算平台&#xff0c;旨在简化和加速 EnzyDock 对接模拟的设置过程&…...

c# 2025/2/17 周一

16. 《表达式&#xff0c;语句详解4》 20 未完。。 表达式&#xff0c;语句详解_4_哔哩哔哩_bilibili...

vite【详解】常用配置 vite.config.js / vite.config.ts

官网 https://cn.vitejs.dev/guide/ vite 常用配置 Vite 配置文件通常是 vite.config.js &#xff08;使用 CommonJS 语法&#xff09;或者 vite.config.ts&#xff08;使用 TypeScript 语法&#xff09;&#xff0c;默认内容为 import { defineConfig } from vite import vue…...

最新智能优化算法: 阿尔法进化(Alpha Evolution,AE)算法求解23个经典函数测试集,MATLAB代码

一、阿尔法进化算法 阿尔法进化&#xff08;Alpha Evolution&#xff0c;AE&#xff09;算法是2024年提出的一种新型进化算法&#xff0c;其核心在于通过自适应基向量和随机步长的设计来更新解&#xff0c;从而提高算法的性能。以下是AE算法的主要步骤和特点&#xff1a; 主…...

用于可靠工业通信的5G-TSN集成原型:基于帧复制与消除可靠性的研究

论文标题 中文标题&#xff1a;用于可靠工业通信的5G-TSN集成原型&#xff1a;基于帧复制与消除可靠性的研究 英文标题&#xff1a;5G-TSN Integrated Prototype for Reliable Industrial Communication Using Frame Replication and Elimination for Reliability 作者信息 …...

HaProxy源码安装(Rocky8)

haproxy具有高性能、高可用性、灵活的负载均衡策略和强大的将恐和日志功能&#xff0c;是法国开发者 威利塔罗(Willy Tarreau)在2000年使用C语言开发的一个开源软件&#xff0c;是一款具 备高并发(一万以上)、高性能的TCP和HTTP负载均衡器&#xff0c;支持基于cookie的持久性&a…...

shell脚本备份MySQL数据库和库下表

目录 注意&#xff1a; 一.脚本内容 二.执行效果 三.创建定时任务 注意&#xff1a; 以下为对MySQL5.7.42版本数据库备份shell脚本参考运行备份的机器请确认mysqldump版本>5.7&#xff0c;否则备份参数--set-gtid-purgedOFF无效&#xff0c;考虑到一般数据库节点和备份…...

23. AI-大语言模型

文章目录 前言一、LLM1. 简介2. 工作原理和结构3. 应用场景4. 最新研究进展5. 比较 二、Transformer架构1. 简介2. 基本原理和结构3. 应用场景4. 最新进展 三、开源1. 开源概念2. 开源模式3. 模型权重 四、再谈DeepSeek 前言 AI‌ 一、LLM LLM&#xff08;Large Language Mod…...

Linux /dev/null

/dev/null 是 Linux 和类 Unix 系统中一个特殊且非常有用的设备文件&#xff0c;也被称为空设备。下面为你详细介绍它的特点、用途和使用示例。 特点 写入丢弃&#xff1a;当向 /dev/null 写入数据时&#xff0c;这些数据会被立即丢弃&#xff0c;不会被保存到任何地方&#…...

Unity CommandBuffer绘制粒子系统网格显示

CommandBuffer是 Unity 提供的一种在渲染流程中插入自定义渲染命令的机制。在渲染粒子系统时&#xff0c;常规的渲染流程可能无法满足特定的渲染需求&#xff0c;而CommandBuffer允许开发者灵活地设置渲染参数、控制渲染顺序以及执行自定义的绘制操作。通过它&#xff0c;可以精…...

Java延时定时刷新Redis缓存

延时定时刷新Redis缓存 一、背景 项目需求&#xff1a;订阅接收一批实时数据&#xff0c;每分钟最高可接收120万条数据&#xff0c;并且分别更新到redis和数据库中&#xff1b;而用户请求查询消息只是低频操作。资源限制&#xff1a;由于项目预算有限&#xff0c;只有4台4C16…...

智能硬件定位技术发展趋势

在科技飞速进步的当下&#xff0c;智能硬件定位技术作为众多领域的关键支撑&#xff0c;正沿着多元且极具创新性的路径蓬勃发展&#xff0c;持续重塑我们的生活与工作方式。 一、精度提升的极致追求 当前&#xff0c;智能硬件定位精度虽已满足诸多日常应用&#xff0c;但未来…...

全单模矩阵及其在分支定价算法中的应用

全单模矩阵及其在分支定价算法中的应用 目录 全单模矩阵的定义与特性全单模矩阵的判定方法全单模矩阵在优化中的核心价值分支定价算法与矩阵单模性的关系非全单模问题的挑战与系统解决方案总结与工程实践建议 1. 全单模矩阵的定义与特性 关键定义 单模矩阵&#xff08;Unimo…...

DeepSeek 的创新融合:多行业应用实践探索

引言 在数字化转型的浪潮中&#xff0c;技术的融合与创新成为推动各行业发展的关键力量。蓝耘平台作为行业内备受瞩目的创新平台&#xff0c;以其强大的资源整合能力和灵活的架构&#xff0c;为企业提供了高效的服务支持。而 DeepSeek 凭借先进的人工智能技术&#xff0c;在自然…...

利用SkinMagic美化MFC应用界面

MFC(Microsoft Foundation Class)应用程序的界面设计风格通常比较保守,而且虽然MFC框架的控件功能强大且易于集成,但视觉效果较为朴素,缺乏现代感。尤其是MFC应用程序的设计往往以功能实现为核心,界面设计可能显得较为简洁甚至略显呆板,用户体验可能不如现代应用程序流畅…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...