当前位置: 首页 > news >正文

【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测

1.什么是 DETR?

DETR(DEtection TRansformer) 是 Facebook AI(FAIR)于 2020 年提出的 端到端目标检测算法,它基于 Transformer 架构,消除了 Faster R-CNN、YOLO 等方法中的 候选框(Anchor Boxes)非极大值抑制(NMS) 机制,使目标检测变得更简单、高效。

论文:End-to-End Object Detection with Transformers


2.DETR 的核心特点

  • 基于 Transformer 进行目标检测,摆脱了 CNN 传统的 Anchor 机制
  • 端到端训练,无需像 Faster R-CNN 额外使用 RPN 进行候选框生成
  • 全局注意力机制(Self-Attention),可以建模远距离依赖关系,提高检测精度
  • 自动去重,不需要 NMS 后处理步骤
  • 适用于复杂场景,如密集目标检测

3.DETR 的工作流程

DETR 由 三部分 组成:

  • CNN 提取图像特征(ResNet-50 / ResNet-101)
  • Transformer 进行目标检测(编码器 + 解码器)
  • 最终预测目标类别和边界框(分类 + 位置回归)

 DETR 结构示意图

输入图片 -> CNN 提取特征 -> Transformer 处理特征 -> 预测目标类别 + 边界框

4.DETR 代码示例

使用 PyTorch 进行 DETR 目标检测

import torch
import torchvision.transforms as T
from PIL import Image
import requests# 载入 DETR 预训练模型
detr = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True, trust_repo=True)
detr.eval()# 加载图片并进行预处理
image_path = r"D:\Pictures\test.jpeg"
image = Image.open(image_path)transform = T.Compose([T.Resize(800), T.ToTensor()])
img_tensor = transform(image).unsqueeze(0)# 进行目标检测
with torch.no_grad():outputs = detr(img_tensor)# 输出检测结果
print(outputs)

运行结果 

{'pred_logits': tensor([[[-17.4480,  -1.4711,  -6.0746,  ..., -10.0646,  -7.2832,  11.1362],[-17.7877,  -1.7454,  -5.9165,  ..., -11.6356,  -8.4581,  10.7261],[-18.3903,  -1.3194,  -7.6447,  ..., -11.3595,  -6.6635,  11.2573],...,[-18.0295,  -1.6913,  -6.6354,  ..., -11.4836,  -7.7729,  10.9814],[-14.4323,   1.3790,  -4.2558,  ..., -11.5297,  -7.8083,   8.1644],[-17.6349,  -1.6041,  -6.4100,  ..., -11.2120,  -7.4216,  10.7064]]]), 'pred_boxes': tensor([[[0.4990, 0.5690, 0.4764, 0.7080],[0.5039, 0.5219, 0.4657, 0.6124],[0.3920, 0.5463, 0.2963, 0.6085],[0.5231, 0.5180, 0.4489, 0.6110],[0.4986, 0.5346, 0.4989, 0.5883],[0.5145, 0.5258, 0.5162, 0.6123],[0.4251, 0.5273, 0.3235, 0.5911],[0.4012, 0.5339, 0.2816, 0.5804],[0.4025, 0.5263, 0.2526, 0.5638],[0.5153, 0.5249, 0.4807, 0.6065],[0.6775, 0.8235, 0.0436, 0.0436],[0.4380, 0.5365, 0.3368, 0.5919],[0.5044, 0.5242, 0.4791, 0.6314],[0.7352, 0.8131, 0.0248, 0.0464],[0.4567, 0.8361, 0.0448, 0.0530],[0.4981, 0.5287, 0.4715, 0.6199],[0.5047, 0.5239, 0.4570, 0.6045],[0.6295, 0.5182, 0.2367, 0.6062],[0.5980, 0.5261, 0.2878, 0.6313],[0.5106, 0.5218,

代码解析

  • 载入 Facebook 预训练的 DETR 模型detr_resnet50
  • 使用 ResNet 预处理输入图像
  • 利用 Transformer 进行目标检测 并输出检测框

5.DETR vs Faster R-CNN vs YOLO

模型方法检测方式速度(FPS)mAP(COCO)特点
Faster R-CNN双阶段RPN + ROI 池化⏳ 5-10🎯 76.4%高精度,速度慢
YOLOv8单阶段直接预测类别 + 边界框⚡ 60+🎯 92%速度快,适合实时检测
DETR端到端Transformer 进行检测⏳ 15🎯 94%无 Anchor / NMS
  • DETR 适用于端到端目标检测,适合大规模数据和复杂场景。
  • YOLO 适用于实时检测,而 Faster R-CNN 适用于高精度任务。

6.DETR 的优化方向

  • DETR 速度较慢,可优化 Transformer 计算效率(如 Deformable DETR)
  • 提升小目标检测能力(DETR 需要更大数据集进行训练)
  • 轻量化 DETR(如 Mobile-DETR)以适应移动端部署

7.结论

  • DETR 通过 Transformer 解决了目标检测中的 Anchor 机制问题,简化了流程。
  • 它具有端到端训练的优势,但速度较慢,适用于高精度目标检测任务。
  • 随着 Transformer 在计算机视觉中的应用(如 ViT),DETR 可能成为未来目标检测的主流。 

相关文章:

【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测

1.什么是 DETR? DETR(DEtection TRansformer) 是 Facebook AI(FAIR)于 2020 年提出的 端到端目标检测算法,它基于 Transformer 架构,消除了 Faster R-CNN、YOLO 等方法中的 候选框(…...

Windows Docker运行Implicit-SVSDF-Planner

Windows Docker运行GitHub - ZJU-FAST-Lab/Implicit-SVSDF-Planner: [SIGGRAPH 2024 & TOG] 1. 设置环境 我将项目git clone在D:/Github目录中。 下载ubuntu20.04 noetic镜像 docker pull osrf/ros:noetic-desktop-full-focal 启动容器,挂载主机的D:/Github文…...

ELK安装部署同步mysql数据

ELK 安装部署指南 ELK 是 Elasticsearch、Logstash 和 Kibana 的简称,用于日志收集、存储、分析和可视化。 1. 安装 Elasticsearch Elasticsearch 是一个分布式搜索和分析引擎。 1.1 下载并安装 访问 Elasticsearch 官网 下载最新版本。 解压并安装: tar…...

Vision Transformer图像分块嵌入核心技术解析:从数学推导到工业级应用

一、技术原理与数学建模 1.1 图像分块过程数学表达 给定输入图像 x ∈ R H W C x \in \mathbb{R}^{H \times W \times C} x∈RHWC,将其分割为 N N N 个尺寸为 P P P \times P PP 的图块: x p ∈ R N ( P 2 ⋅ C ) 其中 N H W P 2 x_p \in \m…...

【产品资料】陀螺匠·企业助手v1.8 产品介绍

陀螺匠企业助手是一套采用Laravel 9框架结合Swoole高性能协程服务与Vue.js前端技术栈构建的新型智慧企业管理与运营系统。该系统深度融合了客户管理、项目管理、审批流程自动化以及低代码开发平台,旨在为企业提供一站式、数字化转型的全方位解决方案,助力…...

深度求索-DeepSeek-R1本地部署指南

1、参考:部署指南 2、参考:deepseek本地部署只需三步 DeepSeek本地部署只需三步: 1、安装运行环境:安装 Ollama:Ollama官网:官网 2、下载模型:参数越大,需要物里硬件越多 3、安装部…...

代码随想录day12

144.二叉树的前序遍历 //明确递归的函数&#xff0c;结束边界&#xff0c;单层逻辑 void traversal(TreeNode* node, vector<int>& list){if(node nullptr){return;}list.push_back(node->val);traversal(node->left, list);traversal(node->right, list)…...

告别第三方云存储!用File Browser在Windows上自建云盘随时随地访问

文章目录 前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 无论是个人用户还是企业团队&#xff0c;都希望能够有一个高效、安全的解决方案来…...

Ubuntu 下 nginx-1.24.0 源码分析 - NGX_MAX_ALLOC_FROM_POOL

NGX_MAX_ALLOC_FROM_POOL 定义在 src\core\ngx_palloc.h #define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1) 在 src/os/unix/ngx_alloc.h extern ngx_uint_t ngx_pagesize; 这个全局变量定义在 src\os\unix\ngx_alloc.c 中 ngx_uint_t ngx_pagesize; 在 src/os/unix/ngx_…...

PyQt6/PySide6 的 SQL 数据库操作(QtSql)

一、核心组件架构 1.1 QtSql模块构成 QSqlDatabase&#xff1a;数据库连接管理&#xff08;支持连接池&#xff09;QSqlQuery&#xff1a;SQL语句执行与结果遍历QSqlTableModel&#xff1a;可编辑的表格数据模型QSqlQueryModel&#xff1a;只读查询结果模型QSqlRelationalTab…...

利用IDEA将Java.class文件反编译为Java文件:原理、实践与深度解析

文章目录 引言&#xff1a;当.class文件遇到源代码缺失第一章&#xff1a;反编译技术基础认知1.1 Java编译执行原理1.2 反编译的本质1.3 法律与道德边界 第二章&#xff1a;IDEA内置反编译工具详解2.1 环境准备2.2 三步完成基础反编译2.3 高级反编译技巧2.3.1 调试模式反编译2.…...

Kafka偏移量管理全攻略:从基础概念到高级操作实战

#作者&#xff1a;猎人 文章目录 前言&#xff1a;概念剖析kafka的两种位移消费位移消息的位移位移的提交自动提交手动提交 1、使用--to-earliest重置消费组消费指定topic进度2、使用--to-offset重置消费offset3、使用--to-datetime策略指定时间重置offset4、使用--to-current…...

【R语言】GitHub Copilot安装-待解决

参考&#xff1a; 文章目录...

软件定义汽车时代的功能安全和信息安全

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…...

qt的QSizePolicy的使用

使用 QSizePolicy 设置控件的伸缩因子 在 Qt 中&#xff0c;QSizePolicy 控制 控件如何在布局中伸缩。如果想要影响控件的大小调整行为&#xff0c;可以通过 QSizePolicy::setHorizontalStretch() 和 QSizePolicy::setVerticalStretch() 设置伸缩因子。 基本用法 假设我们有一个…...

简单几个步骤完成 Oracle 到金仓数据库(KingbaseES)的迁移目标

作为国产数据库的领军选手&#xff0c;金仓数据库&#xff08;KingbaseES&#xff09;凭借其成熟的技术架构和广泛的市场覆盖&#xff0c;在国内众多领域中扮演着至关重要的角色。无论是国家电网、金融行业&#xff0c;还是铁路、医疗等关键领域&#xff0c;金仓数据库都以其卓…...

DeepSeek自动化写作软件

DeepSeek写作软件的三大核心功能 对于内容创作者来说&#xff0c;写作不仅是表达思想的过程&#xff0c;更是一项需要投入大量时间和精力的任务。面对日益增长的内容需求&#xff0c;写作效率低下、内容质量不高等问题&#xff0c;常常让创作者感到焦虑。而 DeepSeek 写作软件…...

【kafka系列】Kafka如何实现高吞吐量?

目录 1. 生产者端优化 核心机制&#xff1a; 关键参数&#xff1a; 2. Broker端优化 核心机制&#xff1a; 关键源码逻辑&#xff1a; 3. 消费者端优化 核心机制&#xff1a; 关键参数&#xff1a; 全链路优化流程 吞吐量瓶颈与调优 总结 Kafka的高吞吐能力源于其生…...

learn_pytorch03

第三章 深度学习分为如下几个步骤 1&#xff1a;数据预处理&#xff0c;划分训练集和测试集 2&#xff1a;选择模型&#xff0c;设定损失函数和优化函数 3&#xff1a;用模型取拟合训练数据&#xff0c;并在验证计算模型上表现。 接着学习了一些数据读入 模型构建 损失函数的构…...

机器学习:k近邻

所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com)&#xff0c;欢迎查看。 K 邻近算法&#xff08;K-Nearest Neighbors&#xff0c;简称 KNN&#xff09;是一种经典的机器学习算法&#xff0c;主要用于分类和回归任务…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...