当前位置: 首页 > news >正文

【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测

1.什么是 DETR?

DETR(DEtection TRansformer) 是 Facebook AI(FAIR)于 2020 年提出的 端到端目标检测算法,它基于 Transformer 架构,消除了 Faster R-CNN、YOLO 等方法中的 候选框(Anchor Boxes)非极大值抑制(NMS) 机制,使目标检测变得更简单、高效。

论文:End-to-End Object Detection with Transformers


2.DETR 的核心特点

  • 基于 Transformer 进行目标检测,摆脱了 CNN 传统的 Anchor 机制
  • 端到端训练,无需像 Faster R-CNN 额外使用 RPN 进行候选框生成
  • 全局注意力机制(Self-Attention),可以建模远距离依赖关系,提高检测精度
  • 自动去重,不需要 NMS 后处理步骤
  • 适用于复杂场景,如密集目标检测

3.DETR 的工作流程

DETR 由 三部分 组成:

  • CNN 提取图像特征(ResNet-50 / ResNet-101)
  • Transformer 进行目标检测(编码器 + 解码器)
  • 最终预测目标类别和边界框(分类 + 位置回归)

 DETR 结构示意图

输入图片 -> CNN 提取特征 -> Transformer 处理特征 -> 预测目标类别 + 边界框

4.DETR 代码示例

使用 PyTorch 进行 DETR 目标检测

import torch
import torchvision.transforms as T
from PIL import Image
import requests# 载入 DETR 预训练模型
detr = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True, trust_repo=True)
detr.eval()# 加载图片并进行预处理
image_path = r"D:\Pictures\test.jpeg"
image = Image.open(image_path)transform = T.Compose([T.Resize(800), T.ToTensor()])
img_tensor = transform(image).unsqueeze(0)# 进行目标检测
with torch.no_grad():outputs = detr(img_tensor)# 输出检测结果
print(outputs)

运行结果 

{'pred_logits': tensor([[[-17.4480,  -1.4711,  -6.0746,  ..., -10.0646,  -7.2832,  11.1362],[-17.7877,  -1.7454,  -5.9165,  ..., -11.6356,  -8.4581,  10.7261],[-18.3903,  -1.3194,  -7.6447,  ..., -11.3595,  -6.6635,  11.2573],...,[-18.0295,  -1.6913,  -6.6354,  ..., -11.4836,  -7.7729,  10.9814],[-14.4323,   1.3790,  -4.2558,  ..., -11.5297,  -7.8083,   8.1644],[-17.6349,  -1.6041,  -6.4100,  ..., -11.2120,  -7.4216,  10.7064]]]), 'pred_boxes': tensor([[[0.4990, 0.5690, 0.4764, 0.7080],[0.5039, 0.5219, 0.4657, 0.6124],[0.3920, 0.5463, 0.2963, 0.6085],[0.5231, 0.5180, 0.4489, 0.6110],[0.4986, 0.5346, 0.4989, 0.5883],[0.5145, 0.5258, 0.5162, 0.6123],[0.4251, 0.5273, 0.3235, 0.5911],[0.4012, 0.5339, 0.2816, 0.5804],[0.4025, 0.5263, 0.2526, 0.5638],[0.5153, 0.5249, 0.4807, 0.6065],[0.6775, 0.8235, 0.0436, 0.0436],[0.4380, 0.5365, 0.3368, 0.5919],[0.5044, 0.5242, 0.4791, 0.6314],[0.7352, 0.8131, 0.0248, 0.0464],[0.4567, 0.8361, 0.0448, 0.0530],[0.4981, 0.5287, 0.4715, 0.6199],[0.5047, 0.5239, 0.4570, 0.6045],[0.6295, 0.5182, 0.2367, 0.6062],[0.5980, 0.5261, 0.2878, 0.6313],[0.5106, 0.5218,

代码解析

  • 载入 Facebook 预训练的 DETR 模型detr_resnet50
  • 使用 ResNet 预处理输入图像
  • 利用 Transformer 进行目标检测 并输出检测框

5.DETR vs Faster R-CNN vs YOLO

模型方法检测方式速度(FPS)mAP(COCO)特点
Faster R-CNN双阶段RPN + ROI 池化⏳ 5-10🎯 76.4%高精度,速度慢
YOLOv8单阶段直接预测类别 + 边界框⚡ 60+🎯 92%速度快,适合实时检测
DETR端到端Transformer 进行检测⏳ 15🎯 94%无 Anchor / NMS
  • DETR 适用于端到端目标检测,适合大规模数据和复杂场景。
  • YOLO 适用于实时检测,而 Faster R-CNN 适用于高精度任务。

6.DETR 的优化方向

  • DETR 速度较慢,可优化 Transformer 计算效率(如 Deformable DETR)
  • 提升小目标检测能力(DETR 需要更大数据集进行训练)
  • 轻量化 DETR(如 Mobile-DETR)以适应移动端部署

7.结论

  • DETR 通过 Transformer 解决了目标检测中的 Anchor 机制问题,简化了流程。
  • 它具有端到端训练的优势,但速度较慢,适用于高精度目标检测任务。
  • 随着 Transformer 在计算机视觉中的应用(如 ViT),DETR 可能成为未来目标检测的主流。 

相关文章:

【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测

1.什么是 DETR? DETR(DEtection TRansformer) 是 Facebook AI(FAIR)于 2020 年提出的 端到端目标检测算法,它基于 Transformer 架构,消除了 Faster R-CNN、YOLO 等方法中的 候选框(…...

Windows Docker运行Implicit-SVSDF-Planner

Windows Docker运行GitHub - ZJU-FAST-Lab/Implicit-SVSDF-Planner: [SIGGRAPH 2024 & TOG] 1. 设置环境 我将项目git clone在D:/Github目录中。 下载ubuntu20.04 noetic镜像 docker pull osrf/ros:noetic-desktop-full-focal 启动容器,挂载主机的D:/Github文…...

ELK安装部署同步mysql数据

ELK 安装部署指南 ELK 是 Elasticsearch、Logstash 和 Kibana 的简称,用于日志收集、存储、分析和可视化。 1. 安装 Elasticsearch Elasticsearch 是一个分布式搜索和分析引擎。 1.1 下载并安装 访问 Elasticsearch 官网 下载最新版本。 解压并安装: tar…...

Vision Transformer图像分块嵌入核心技术解析:从数学推导到工业级应用

一、技术原理与数学建模 1.1 图像分块过程数学表达 给定输入图像 x ∈ R H W C x \in \mathbb{R}^{H \times W \times C} x∈RHWC,将其分割为 N N N 个尺寸为 P P P \times P PP 的图块: x p ∈ R N ( P 2 ⋅ C ) 其中 N H W P 2 x_p \in \m…...

【产品资料】陀螺匠·企业助手v1.8 产品介绍

陀螺匠企业助手是一套采用Laravel 9框架结合Swoole高性能协程服务与Vue.js前端技术栈构建的新型智慧企业管理与运营系统。该系统深度融合了客户管理、项目管理、审批流程自动化以及低代码开发平台,旨在为企业提供一站式、数字化转型的全方位解决方案,助力…...

深度求索-DeepSeek-R1本地部署指南

1、参考:部署指南 2、参考:deepseek本地部署只需三步 DeepSeek本地部署只需三步: 1、安装运行环境:安装 Ollama:Ollama官网:官网 2、下载模型:参数越大,需要物里硬件越多 3、安装部…...

代码随想录day12

144.二叉树的前序遍历 //明确递归的函数&#xff0c;结束边界&#xff0c;单层逻辑 void traversal(TreeNode* node, vector<int>& list){if(node nullptr){return;}list.push_back(node->val);traversal(node->left, list);traversal(node->right, list)…...

告别第三方云存储!用File Browser在Windows上自建云盘随时随地访问

文章目录 前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 无论是个人用户还是企业团队&#xff0c;都希望能够有一个高效、安全的解决方案来…...

Ubuntu 下 nginx-1.24.0 源码分析 - NGX_MAX_ALLOC_FROM_POOL

NGX_MAX_ALLOC_FROM_POOL 定义在 src\core\ngx_palloc.h #define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1) 在 src/os/unix/ngx_alloc.h extern ngx_uint_t ngx_pagesize; 这个全局变量定义在 src\os\unix\ngx_alloc.c 中 ngx_uint_t ngx_pagesize; 在 src/os/unix/ngx_…...

PyQt6/PySide6 的 SQL 数据库操作(QtSql)

一、核心组件架构 1.1 QtSql模块构成 QSqlDatabase&#xff1a;数据库连接管理&#xff08;支持连接池&#xff09;QSqlQuery&#xff1a;SQL语句执行与结果遍历QSqlTableModel&#xff1a;可编辑的表格数据模型QSqlQueryModel&#xff1a;只读查询结果模型QSqlRelationalTab…...

利用IDEA将Java.class文件反编译为Java文件:原理、实践与深度解析

文章目录 引言&#xff1a;当.class文件遇到源代码缺失第一章&#xff1a;反编译技术基础认知1.1 Java编译执行原理1.2 反编译的本质1.3 法律与道德边界 第二章&#xff1a;IDEA内置反编译工具详解2.1 环境准备2.2 三步完成基础反编译2.3 高级反编译技巧2.3.1 调试模式反编译2.…...

Kafka偏移量管理全攻略:从基础概念到高级操作实战

#作者&#xff1a;猎人 文章目录 前言&#xff1a;概念剖析kafka的两种位移消费位移消息的位移位移的提交自动提交手动提交 1、使用--to-earliest重置消费组消费指定topic进度2、使用--to-offset重置消费offset3、使用--to-datetime策略指定时间重置offset4、使用--to-current…...

【R语言】GitHub Copilot安装-待解决

参考&#xff1a; 文章目录...

软件定义汽车时代的功能安全和信息安全

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…...

qt的QSizePolicy的使用

使用 QSizePolicy 设置控件的伸缩因子 在 Qt 中&#xff0c;QSizePolicy 控制 控件如何在布局中伸缩。如果想要影响控件的大小调整行为&#xff0c;可以通过 QSizePolicy::setHorizontalStretch() 和 QSizePolicy::setVerticalStretch() 设置伸缩因子。 基本用法 假设我们有一个…...

简单几个步骤完成 Oracle 到金仓数据库(KingbaseES)的迁移目标

作为国产数据库的领军选手&#xff0c;金仓数据库&#xff08;KingbaseES&#xff09;凭借其成熟的技术架构和广泛的市场覆盖&#xff0c;在国内众多领域中扮演着至关重要的角色。无论是国家电网、金融行业&#xff0c;还是铁路、医疗等关键领域&#xff0c;金仓数据库都以其卓…...

DeepSeek自动化写作软件

DeepSeek写作软件的三大核心功能 对于内容创作者来说&#xff0c;写作不仅是表达思想的过程&#xff0c;更是一项需要投入大量时间和精力的任务。面对日益增长的内容需求&#xff0c;写作效率低下、内容质量不高等问题&#xff0c;常常让创作者感到焦虑。而 DeepSeek 写作软件…...

【kafka系列】Kafka如何实现高吞吐量?

目录 1. 生产者端优化 核心机制&#xff1a; 关键参数&#xff1a; 2. Broker端优化 核心机制&#xff1a; 关键源码逻辑&#xff1a; 3. 消费者端优化 核心机制&#xff1a; 关键参数&#xff1a; 全链路优化流程 吞吐量瓶颈与调优 总结 Kafka的高吞吐能力源于其生…...

learn_pytorch03

第三章 深度学习分为如下几个步骤 1&#xff1a;数据预处理&#xff0c;划分训练集和测试集 2&#xff1a;选择模型&#xff0c;设定损失函数和优化函数 3&#xff1a;用模型取拟合训练数据&#xff0c;并在验证计算模型上表现。 接着学习了一些数据读入 模型构建 损失函数的构…...

机器学习:k近邻

所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com)&#xff0c;欢迎查看。 K 邻近算法&#xff08;K-Nearest Neighbors&#xff0c;简称 KNN&#xff09;是一种经典的机器学习算法&#xff0c;主要用于分类和回归任务…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...