利用 OpenCV 进行棋盘检测与透视变换
利用 OpenCV 进行棋盘检测与透视变换
1. 引言
在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于 摄像机标定、文档扫描、增强现实(AR) 等场景。本篇文章将详细介绍如何使用 OpenCV 进行 棋盘检测,并通过 透视变换 将棋盘区域转换为一个标准的矩形图像。
我们将基于一段 Python 代码 进行分析,代码的主要任务包括:
- 读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)
- 检测边缘并提取棋盘区域
- 计算透视变换矩阵并进行变换
- 展示和保存结果
2. 代码解析
完整代码如下:
import cv2
import numpy as npdef detect_and_transform_chessboard(image_path):# 读取图像img = cv2.imread(image_path)if img is None:print("无法读取图像文件")return# 保存原始图像尺寸original_img = img.copy()# 图像预处理scale_percent = 50width = int(img.shape[1] * scale_percent / 100)height = int(img.shape[0] * scale_percent / 100)img = cv2.resize(img, (width, height))gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 自适应直方图均衡化clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))gray = clahe.apply(gray)# 使用双边滤波减少噪声gray = cv2.bilateralFilter(gray, 11, 17, 17)found = Falseedges = cv2.Canny(gray, 50, 150)contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)if len(contours) > 0:contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]for contour in contours:epsilon = 0.02 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)if len(approx) == 4 and cv2.contourArea(approx) > 1000:cv2.drawContours(img, [approx], -1, (0, 0, 255), 2)corners_pts = approx.reshape(4, 2).astype(np.float32)corners_pts = order_points(corners_pts)found = Truebreakif found and corners_pts is not None:target_size = (400, 400)target_pts = np.array([[0, 0],[target_size[0], 0],[target_size[0], target_size[1]],[0, target_size[1]]], dtype=np.float32)matrix = cv2.getPerspectiveTransform(corners_pts, target_pts)warped = cv2.warpPerspective(img, matrix, target_size)cv2.namedWindow('yuantu', cv2.WINDOW_NORMAL)cv2.imshow('yuantu', img)cv2.namedWindow('zhentu', cv2.WINDOW_NORMAL)cv2.imshow('zhentu', warped)cv2.imwrite('detected_chessboard.png', img)cv2.imwrite('transformed_chessboard.png', warped)else:print("无法进行透视变换:未检测到有效的棋盘角点")cv2.waitKey(0)cv2.destroyAllWindows()def order_points(pts):rect = np.zeros((4, 2), dtype=np.float32)s = pts.sum(axis=1)rect[0] = pts[np.argmin(s)] # 左上rect[2] = pts[np.argmax(s)] # 右下diff = np.diff(pts, axis=1)rect[1] = pts[np.argmin(diff)] # 右上rect[3] = pts[np.argmax(diff)] # 左下return rectif __name__ == "__main__":image_path = "1.jpg"detect_and_transform_chessboard(image_path)
原图

代码运行结果图


7. 进一步优化与拓展
7.1 多尺度图像处理
在实际应用中,棋盘大小可能存在变形和比例不一致的情况。可以使用图像金字塔(Image Pyramid)来对不同尺度的图像进行分析,提高算法的适应性。
7.2 使用深度学习改进检测
传统的边缘检测和轮廓提取方法对于复杂背景或光照变化较大的情况可能表现不佳。可以尝试使用**深度学习模型(如YOLO或OpenCV DNN模块)**来替代传统的边缘检测方法。
7.3 自动化角点提取优化
目前的角点提取方法依赖 cv2.approxPolyDP(),可以引入更精确的 Harris 角点检测 或 Shi-Tomasi 角点检测,提高精度。
7.4 进一步增强抗噪性
可以引入 cv2.GaussianBlur() 或 cv2.medianBlur() 进一步去除噪声,以便更清晰地检测边缘。
8. 结论
本篇文章介绍了基于 OpenCV 进行棋盘检测与透视变换的方法,详细分析了 图像预处理、边缘检测、透视变换 关键技术,并提供了优化建议。希望对你有所帮助!在实际应用中,可以结合深度学习和图像处理优化,提高检测的精度和鲁棒性。
相关文章:
利用 OpenCV 进行棋盘检测与透视变换
利用 OpenCV 进行棋盘检测与透视变换 1. 引言 在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于 摄像机标定、文档扫描、增强现实(AR) 等场景。本篇文章将详细介绍如何使用 OpenCV 进行 棋盘检测,并…...
Java Spring boot 篇:常用注解
Configuration 作用 Configuration 注解的核心作用是把一个类标记为 Spring 应用上下文里的配置类。配置类就像一个 Java 版的 XML 配置文件,能够在其中定义 Bean 定义和 Bean 之间的依赖关系。当 Spring 容器启动时,会扫描这些配置类,解析其…...
#渗透测试#批量漏洞挖掘#Apache Log4j反序列化命令执行漏洞
免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 Apache Log4j反序列化命令执行漏洞 一、…...
【Linux】Linux 文件系统——关于inode 不足的相关案例
ℹ️大家好,我是练小杰,今天周二了,明天星期三,还有三天就是星期五了,坚持住啊各位!!!😆 本文是对之前Linux文件权限中的inode号进行实例讨论,看到博客有错误…...
k8s集群如何赋权普通用户仅管理指定命名空间资源
文章目录 1. 普通用户2. 创建私钥3. 创建 CertificateSigningRequest4. 批准 CertificateSigningRequest5. 创建 kubeconfig6. 创建角色和角色绑定7. 测试 1. 普通用户 创建用户demo useradd demo2. 创建私钥 下面的脚本展示了如何生成 PKI 私钥和 CSR。 设置 CSR 的 CN 和 …...
工控网络安全介绍 工控网络安全知识题目
31.PDR模型与访问控制的主要区别(A) A、PDR把对象看作一个整体 B、PDR作为系统保护的第一道防线 C、PDR采用定性评估与定量评估相结合 D、PDR的关键因素是人 32.信息安全中PDR模型的关键因素是(A) A、人 B、技术 C、模型 D、客体 33.计算机网络最早出现在哪个年代(B) A、20世…...
AIGC(生成式AI)试用 21 -- Python调用deepseek API
1. 安装openai pip3 install openai########################## Collecting openaiUsing cached openai-1.61.1-py3-none-any.whl.metadata (27 kB) Collecting anyio<5,>3.5.0 (from openai)Using cached anyio-4.8.0-py3-none-any.whl.metadata (4.6 kB) Collecting d…...
跨平台AES/DES加密解密算法【超全】
算法说明 要实现在 WinForm、Android、iOS、Vue3 中使用 相同的算法,确保各平台加密结果互通 一、统一加密参数 算法: AES-256-CBC 密钥: 32字节(示例中使用固定字符串生成) IV: 16字节 填充模式: PKCS7 字符编码: UTF-8 输出格式: Base64二、各平台实现代码...
Webpack 基础入门
一、Webpack 是什么 Webpack 是一款现代 JavaScript 应用程序的静态模块打包工具。在 Web 开发中,我们的项目会包含各种类型的文件,如 JavaScript、CSS、图片等。Webpack 可以将这些文件打包成一个或多个文件,以便在浏览器中高效加载。它就像…...
deepseek-v3在阿里云和腾讯云的使用中的差异
随着deepseek在各大云商上线,试用了下阿里云和腾讯云的deepseek服务,在回答经典数学问题9.9和9.11谁大时,发现还是有差异的。将相关的问题记录如下。 1、问题表现 笔者使用的openai的官方sdk go-openai。 因本文中测验主要使用阿里云和腾讯…...
Mathtype安装入门指南
Mathtype安装入门指南 1 mathtype安装及补丁2 mathtype在word中加载3 常见的mathtype快捷命令4 实列测试 1 mathtype安装及补丁 下载相应的Mathtype7.4软件安装包,百度网盘链接为: 百度网盘链接下载完成后,有三个软件,如下图所示…...
使用 Apache PDFBox 提取 PDF 中的文本和图像
在许多应用中,我们需要从 PDF 文件中提取文本内容和嵌入的图像。为了实现这一目标,Apache PDFBox 是一个非常实用的开源工具库。它提供了丰富的 API,可以帮助我们轻松地读取 PDF 文件、提取其中的文本、图像以及其他资源。 本文将介绍如何使…...
【js逆向_入门】图灵爬虫练习平台 第四题
(base64解码)地址:aHR0cHM6Ly9zdHUudHVsaW5ncHl0b24uY24vcHJvYmxlbS1kZXRhaWwvNC8 请求接口带有加密参数: 全局搜索Sign,找到参数生成位置 一目了然,知道参数是怎么构造生成的 调试代码 测试验证思路是否正确 时间: …...
Redis7——基础篇(三)
前言:此篇文章系本人学习过程中记录下来的笔记,里面难免会有不少欠缺的地方,诚心期待大家多多给予指教。 基础篇: Redis(一)Redis(二) 接上期内容:上期完成了Redis的基本…...
深度学习中的知识蒸馏
大家好,我是小青 今天给大家分享神经网络中的一个关键概念,知识蒸馏 知识蒸馏(Knowledge Distillation)是一种模型压缩技术,旨在将大型、复杂的模型(通常称为教师模型)的知识迁移到小型、简单…...
【Windows软件 - HeidiSQL】导出数据库
HeidSQL导出数据库 软件信息 具体操作 示例文件 选项分析 选项(1) 结果(1) -- -------------------------------------------------------- -- 主机: 127.0.0.1 -- 服务器版本: …...
苏剑林“闭门造车”之多模态思路浅谈思考
原文来自科学空间苏剑林 “闭门造车”之多模态思路浅谈(一):无损输入和“闭门造车”之多模态思路浅谈(二):自回归,学习后总结。 文章目录 “闭门造车”之多模态思路浅谈(一ÿ…...
绿联nas docker 安装 rocketmq 队列。亲测可用
首先拉取docker 镜像,所需镜像如下: 安装 nameserver docker run -d -p 9876:9876 \ -v ${HOME}/docker/software/rocketmq/data/namesrv/logs:/opt/logs \ -v ${HOME}/docker/software/rocketmq/data/namesrv/store:/opt/store \ --name rmqnamesrv \ …...
C++(23):unreachable
C++23在头文件 "><utility>定义了std::unreachable(),用于指示编译器,该段代码不应该被允许,因此编译器可以对该位置进行优化,如果一旦允许了该位置的代码,行为未定义: #include <utility> #include <iostream>using namespace std;int func(…...
初等数论--欧几里得算法
1. 定义 u 0 u 1 ∈ Z , u 1 ≠ 0 , u 1 ∤ u 0 u_0\ u_1\in Z,u_1 \ne0,u_1 \nmid u_0 u0 u1∈Z,u10,u1∤u0 根据带余除法可得下面一系列等式 u 0 q 0 u 1 u 2 0 < u 2 < ∣ u 1 ∣ u 1 q 0 u 2 u 3 0 < u 3 < u 2 ⋯ u k − 1 q k − 1 u k …...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
