当前位置: 首页 > news >正文

深入解析队列与广度优先搜索(BFS)的算法思想:原理、实现与应用

目录

1. 队列的基本概念

2. 广度优先搜索(BFS)的基本概念

3. 队列在BFS中的作用

4. BFS的实现细节

5. C++实现BFS

6. BFS的应用场景

7. 复杂度分析

8. 总结


1. 队列的基本概念

队列(Queue)是一种先进先出(FIFO, First In First Out)的线性数据结构。它有两个主要操作:

  • 入队(Enqueue):将元素添加到队列的末尾。

  • 出队(Dequeue):移除队列的第一个元素。

在C++中,队列可以通过STL中的std::queue来实现:

#include <queue>std::queue<int> q;
q.push(1);  // 入队
q.pop();    // 出队
int front = q.front();  // 获取队首元素

2. 广度优先搜索(BFS)的基本概念

广度优先搜索(BFS, Breadth-First Search)是一种用于遍历或搜索树或图的算法。BFS从根节点(或任意节点)开始,逐层遍历所有相邻节点,直到找到目标节点或遍历完所有节点。

BFS的核心思想是使用队列来存储待访问的节点。具体步骤如下:

  1. 将起始节点放入队列。

  2. 从队列中取出一个节点,访问它。

  3. 将该节点的所有未访问过的相邻节点放入队列。

  4. 重复步骤2和3,直到队列为空。

3. 队列在BFS中的作用

队列在BFS中起到了关键作用,它保证了节点按照层次顺序被访问。具体来说:

  • 层次遍历:队列确保每一层的节点都在下一层节点之前被访问。

  • 避免重复访问:通过标记已访问的节点,可以避免重复访问和无限循环。

4. BFS的实现细节

在实现BFS时,需要注意以下几个关键点:

  • 访问标记:通常使用一个数组或哈希表来记录哪些节点已经被访问过。

  • 队列操作:每次从队列中取出一个节点,访问它,并将其未访问的相邻节点加入队列。

  • 终止条件:当队列为空时,BFS结束。

5. C++实现BFS

下面是一个使用队列实现BFS的C++代码示例,假设我们有一个无向图,用邻接表表示:

#include <iostream>
#include <queue>
#include <vector>void BFS(int start, const std::vector<std::vector<int>>& graph) {std::vector<bool> visited(graph.size(), false);std::queue<int> q;q.push(start);visited[start] = true;while (!q.empty()) {int node = q.front();q.pop();std::cout << "Visited node: " << node << std::endl;for (int neighbor : graph[node]) {if (!visited[neighbor]) {q.push(neighbor);visited[neighbor] = true;}}}
}int main() {// 示例图的邻接表表示std::vector<std::vector<int>> graph = {{1, 2},    // 节点0的邻居{0, 3, 4}, // 节点1的邻居{0, 5},   // 节点2的邻居{1},      // 节点3的邻居{1},      // 节点4的邻居{2}       // 节点5的邻居};BFS(0, graph);  // 从节点0开始BFSreturn 0;
}

6. BFS的应用场景

BFS广泛应用于各种场景,包括但不限于:

  • 最短路径问题:在无权图中,BFS可以找到从起点到目标节点的最短路径。

  • 连通性检测:BFS可以用于检测图中的连通分量。

  • 状态空间搜索:在解决某些问题时,BFS可以用于搜索状态空间,如八数码问题、迷宫问题等。

7. 复杂度分析

  • 时间复杂度:BFS的时间复杂度为O(V + E),其中V是顶点数,E是边数。每个节点和每条边都会被访问一次。

  • 空间复杂度:BFS的空间复杂度主要取决于队列的大小,最坏情况下为O(V)。

8. 总结

        “队列+宽搜”是一种经典的算法思想,通过队列的先进先出特性,BFS能够有效地遍历图或树结构,并解决许多实际问题。理解队列在BFS中的作用以及如何正确实现BFS是掌握这一算法思想的关键。通过C++的实现,我们可以清晰地看到队列如何帮助BFS逐层遍历节点,并确保每个节点只被访问一次。

相关文章:

深入解析队列与广度优先搜索(BFS)的算法思想:原理、实现与应用

目录 1. 队列的基本概念 2. 广度优先搜索&#xff08;BFS&#xff09;的基本概念 3. 队列在BFS中的作用 4. BFS的实现细节 5. C实现BFS 6. BFS的应用场景 7. 复杂度分析 8. 总结 1. 队列的基本概念 队列&#xff08;Queue&#xff09;是一种先进先出&#xff08;FIFO, …...

Swap to Gather-----

C - 烟销日出不见人 问题陈述 给定一个长度为 NN 的字符串 SS&#xff0c;由 0 和 1 组成。保证 SS 至少包含一个 1。 您可以执行以下操作任意次数&#xff08;可能为零&#xff09;&#xff1a; 选择一个整数 ii (1≤i≤N−11≤i≤N−1)&#xff0c;并交换 SS 的第 ii 个和…...

使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(自动化篇)

7.5. 配图生成 目的&#xff1a;由于小红书发布文章要求图文格式&#xff0c;因此在生成文案的基础上&#xff0c;我们还需要生成图文搭配文案进行发布。 原实现思路&#xff1a; 起初我打算使用deepseek的文生图模型Janus进行本地部署生成&#xff0c;参考博客&#xff1a;De…...

Python 函数式编程全攻略:从理论到实战的深度解析

本文深入剖析 Python 函数式编程&#xff0c;详细讲解其概念、核心特性&#xff08;迭代器、生成器等&#xff09;、内置函数及相关模块&#xff08;itertools、functools &#xff09;&#xff0c;结合丰富示例与直观图表&#xff0c;助力读者全面掌握函数式编程技巧&#xff…...

Ollama 在 LangChain 中的使用

文章目录 一、langChain 介绍二、环境安装1.依赖库安装2.下载模型 三、基本使用示例1.使用 ChatPromptTemplate 进行对话2.流式输出3.工具调用4.多模态模型调用 四、进阶使用1.使用 ConversationChain 进行对话2.自定义提示模板3.构建一个简单的 RAG 问答系统 五、遇到问题与解…...

使用apt-rdepends制作软件离线deb安装包

使用apt-rdepends制作软件离线deb安装包 除基础软件外&#xff0c;还要获取软件依赖包。 依赖包工具安装 apt-get install apt-rdependsapt-rdepends工具使用 使用apt-rdepends工具&#xff0c;递归方式分析软件依赖&#xff0c;下载软件包本体&#xff0c;和依赖包。制作时…...

根据POD名称生成 三部曲:get、describe、log、exec

#!/bin/bash# 定义颜色变量 RED\033[0;31m GREEN\033[0;32m YELLOW\033[0;33m NC\033[0m # No Color# 检查是否传入 Pod 名称作为参数 if [ -z "$1" ]; then# 如果没有传参&#xff0c;则提示用户输入 Pod 名称echo -e "${YELLOW}Please enter the Pod name:${…...

SQL sever数据导入导出实验

1.创建数据库TCP-H &#xff08;1&#xff09;右键“数据库”&#xff0c;点击“新建数据库”即可 &#xff08;2&#xff09;用sql语言创建&#xff0c;此处以创建数据库DB_test为例&#xff0c;代码如下&#xff1a; use master;go--检查在当前服务器系统中的所有数据里面…...

python环境的yolov11.rknn物体检测

1.首先是我手里生成的一个yolo11的.rknn模型&#xff1a; 2.比对一下yolov5的模型&#xff1a; 2.1 yolov5模型的后期处理&#xff1a; outputs rknn.inference(inputs[img2], data_format[nhwc])np.save(./onnx_yolov5_0.npy, outputs[0])np.save(./onnx_yolov5_1.npy, outpu…...

I2C、SPI、UART

I2C&#xff1a;串口通信&#xff0c;同步&#xff0c;半双工&#xff0c;双线&#xff08;数据线SDA时钟线SCL&#xff09;&#xff0c;最大距离1米到几米 SPI&#xff08;串行外设接口&#xff09;&#xff1a;串口通信&#xff0c;同步&#xff0c;全双工&#xff0c;四线&…...

如何监控和优化 MySQL 中的慢 SQL

如何监控和优化 MySQL 中的慢 SQL 前言一、什么是慢 SQL&#xff1f;二、如何监控慢 SQL&#xff1f;1. 启用慢查询日志启用方法&#xff1a;日志内容&#xff1a; 2. 使用 mysqldumpslow 分析日志 三、如何分析慢 SQL&#xff1f;1. 使用 EXPLAIN 分析执行计划使用方法&#x…...

13-二叉树最小深度-深度优先(DFS)

一、定义 什么是二叉树的最小深度&#xff1f; 二叉树的最小深度是指从根节点到最近的叶子节点的最短路径上的节点数。叶子节点是指没有子节点的节点。 举个例子&#xff1a; 1/ \2 3/ 4 这棵树的最小深度是 2&#xff0c;因为从根节点 1 到叶子节点 3 的路径最短&#x…...

51单片机入门_10_数码管动态显示(数字的使用;简单动态显示;指定值的数码管动态显示)

接上篇的数码管静态显示&#xff0c;以下是接上篇介绍到的动态显示的原理。 动态显示的特点是将所有位数码管的段选线并联在一起&#xff0c;由位选线控制是哪一位数码管有效。选亮数码管采用动态扫描显示。所谓动态扫描显示即轮流向各位数码管送出字形码和相应的位选&#xff…...

代码补全『三重奏』:EverEdit如何用上下文识别+语法感知+智能片段重构你的编码效率!

1 代码自动完成 1.1 应用场景 在编辑文档时&#xff0c;为了提高编辑效率&#xff0c;编辑器一般都会带有自动完成功能&#xff0c;比如&#xff1a;输入括号时自动补全另一半&#xff0c;输入文字时&#xff0c;自动补全剩下的部分。 1.2 使用方法 1.2.1 自动缩进 单击主菜…...

电脑系统损坏,备份文件

一、工具准备 1.U盘&#xff1a;8G以上就够用&#xff0c;注意会格式化U盘&#xff0c;提前备份U盘内容 2.电脑&#xff1a;下载Windows系统并进行启动盘制作 二、Windows启动盘制作 1.微软官网下载启动盘制作工具微软官网下载启动盘制作工具https://www.microsoft.com/zh-c…...

Token Statistics Transformer:线性注意力革命,重新定义Transformer效率天花板

“TOKEN STATISTICS TRANSFORMER: LINEAR-TIME ATTENTION VIA VARIATIONAL RATE REDUCTION” 由Ziyang Wu等人撰写。文章提出一种新型Transformer注意力算子&#xff0c;通过对最大编码率降低&#xff08; M C R 2 MCR^{2} MCR2&#xff09;目标的变分形式进行展开优化得到&…...

Django 5实用指南(二)项目结构与管理

2.1 Django5项目结构概述 当你创建一个新的 Django 项目时&#xff0c;Django 会自动生成一个默认的项目结构。这个结构是根据 Django 的最佳实践来设计的&#xff0c;以便开发者能够清晰地管理和维护项目中的各种组件。理解并管理好这些文件和目录结构是 Django 开发的基础。…...

JAVA监听器(学习自用)

一、什么是监听器 servlet监听器是一种特殊的接口&#xff0c;用于监听特定的事件&#xff08;如请求创建和销毁、会话创建和销毁、上下文的初始化和销毁&#xff09;。 当Web应用程序中反生特定事件时&#xff0c;Servlet容器就会自动调用监听器中相应的方法来处理这些事件。…...

Ubuntu下mysql主从复制搭建

本文介绍mysql 8.4主从集群的搭建&#xff0c;从单个机器安装到集群的配置&#xff0c;整体走了一遍&#xff0c;希望对大家有帮助。mysql 8.4和之前的版本命令上有些变化&#xff0c;大家用来参考。 0、环境 ubuntu&#xff1a; 22.04mysql&#xff1a;8.4 1、安装mysql 1…...

VirtualBox 中使用 桥接网卡 并设置 MAC 地址

在 VirtualBox 中使用 桥接网卡 并设置 MAC 地址&#xff0c;可以按照以下步骤操作&#xff1a; 步骤 1&#xff1a;设置桥接网卡 打开 VirtualBox&#xff0c;选择你的虚拟机&#xff0c;点击 “设置” (Settings)。进入 “网络” (Network) 选项卡。在 “适配器 1” (Adapt…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...