【deepseek-r1模型】linux部署deepseek
1、快速安装
Ollama 下载:Download Ollama on macOS
Ollama 官方主页:https://ollama.com
Ollama 官方 GitHub 源代码仓库:https://github.com/ollama/ollama/
官网提供了一条命令行快速安装的方法。
(1)下载Ollama
curl -fsSL https://ollama.com/install.sh | sh
此命令将自动下载最新版本的 Ollama 并完成安装,以下是 Ollama 使用常见的指令:
ollama serve #启动ollama
ollama create #从模型文件创建模型
ollama show #显示模型信息
ollama run #运行模型
ollama pull #从注册表中拉取模型
ollama push #将模型推送到注册表
ollama list #列出模型
ollama cp #复制模型
ollama rm #删除模型
ollama help #获取有关任何命令的帮助信息
- 验证安装完成,在
Exec
处输入:
ollama -h
输出如下:即表示安装成功🎉
(2)开启并使用 Ollama
1).在Service中增加下面两行
vi /etc/systemd/system/ollama.service
Environment="OLLAMA_HOST=0.0.0.0"
Environment="OLLAMA_ORIGINS=*"
2).首先,在终端中开启 Ollama,并在后台挂起(这里有可能有问题,启动的时候是127.0.0.1监听的)
ollama serve
(3)下载大模型
然后下载大模型选择Models 选择一个模型 我这里选择的是deepseek-r1
执行命令以下是成功的结果
(4)以下是常用的指令
1.运行指定大模型指令
ollama run deepseek-r1:7b
2.停止ollama服务
systemctl stop ollama
3.指令启动方式(这个是解决ollama serve启动时ip监听错误的指令)
OLLAMA_HOST=0.0.0.0:11434 /usr/local/bin/ollama serve
这是错误的监听界面
这是正确的监听界面
2. Ollama接口概览
Ollama 提供了以下主要接口:
(1) 生成文本
- URL:
POST /api/generate
- 功能: 向模型发送提示(prompt),生成文本。
请求体:
{"prompt": "你的提示文本","max_tokens": 50, // 可选,生成的最大 token 数量"temperature": 0.7, // 可选,控制生成文本的随机性"top_p": 0.9, // 可选,控制生成文本的多样性"stop": ["\n", "。"] // 可选,生成停止的标记
}
响应体:
{"response": "模型生成的文本","tokens_used": 50 // 使用的 token 数量
}
(2) 对话模式
- URL:
POST /api/chat
- 功能: 与模型进行多轮对话。
请求体:
{"messages": [{"role": "user", "content": "你好!"},{"role": "assistant", "content": "你好,有什么可以帮助你的?"}],"max_tokens": 100, // 可选,生成的最大 token 数量"temperature": 0.7 // 可选,控制生成文本的随机性
}
响应体:
{"response": "模型生成的回复","tokens_used": 100 // 使用的 token 数量
}
(3) 获取模型信息
- URL:
GET /api/model
- 功能: 获取当前加载的模型信息。
响应体:
{"model_name": "deepseek-r1:7b","model_size": "7B",
}
(4) 重新加载模型
- URL:
POST /api/reload
- 功能: 重新加载模型。
请求体:
{"model": "deepseek-r1:7b" // 可选,指定重新加载的模型
}
响应体:
{"status": "success","message": "Model reloaded successfully"
}
(5) 停止服务
- URL:
POST /api/stop
- 功能: 停止 Ollama 服务。
响应体:
{"status": "success","message": "Service stopped successfully"
}
3. 参数说明
参数名 | 类型 | 说明 |
| string | 生成文本的提示。 |
| array | 对话模式中的消息列表,每条消息包含 (user/assistant)和 。 |
| integer | 生成的最大 token 数量。 |
| float | 控制生成文本的随机性,值越高越随机。 |
| float | 控制生成文本的多样性,值越高越多样。 |
| array | 生成停止的标记列表。 |
4. 错误响应
如果请求失败,Ollama 会返回以下格式的错误信息:
{"error": "错误描述","code": 400 // 错误码
}
常见错误码:
400
: 请求参数错误。404
: 接口不存在。500
: 服务器内部错误。
5. 注意事项
- 确保 Ollama 服务已正确启动,并且模型
deepseek-r1:7b
已加载。 - 如果服务监听在
127.0.0.1
,外部无法访问,请修改为0.0.0.0
。 - 如果需要更高的性能,可以调整模型的参数(如
max_tokens
和temperature
)。
6. Java调用demo
public static void main(String[] args) {try (CloseableHttpClient httpClient = HttpClients.createDefault()) {HttpPost post = new HttpPost("http://你的ip:11434/api/generate");// 注意Ollama的API参数格式String json = "{"+ "\"model\": \"deepseek-r1:7b\","+ "\"prompt\": \"Hello World!\","
// + "\"temperature\": 0.7," // 新增温度参数
// + "\"top_p\": 0.9," // 新增top_p参数+ "\"stream\": false," // 是否启用流式 true时会逐个返回结果,而不是一次性返回全部结果+ "\"max_tokens\": 50"+ "}";post.setEntity(new StringEntity(json));post.setHeader("Content-Type", "application/json");HttpResponse response = httpClient.execute(post);String result = EntityUtils.toString(response.getEntity());System.out.println("API Response:\n" + result);// 解析 JSONJSONObject jsonObject = JSON.parseObject(result);// 提取 "response" 字段的值String responseStr = jsonObject.getString("response");// 去除 HTML 标签(如果需要)String cleanedResponse = responseStr.replaceAll("\\u003c/?.*?\\u003e", "").trim();// 打印结果System.out.println(String.format("提取的回答内容:%s", cleanedResponse));} catch (Exception e) {e.printStackTrace();}}
以下是请求成功的示例
如果对你有帮助请帮忙点个👍
相关文章:

【deepseek-r1模型】linux部署deepseek
1、快速安装 Ollama 下载:Download Ollama on macOS Ollama 官方主页:https://ollama.com Ollama 官方 GitHub 源代码仓库:https://github.com/ollama/ollama/ 官网提供了一条命令行快速安装的方法。 (1)下载Olla…...
【Github每日推荐】-- 2024 年项目汇总
1、AI 技术 项目简述OmniParser一款基于纯视觉的 GUI 智能体,能够准确识别界面上可交互图标以及理解截图中各元素语义,实现自动化界面交互场景,如自动化测试、自动化操作等。ChatTTS一款专门为对话场景设计的语音生成模型,主要用…...
C++中的.*运算符
看运算符重载的时候,看到这一句 .* :: sizeof ?: . 注意以上5个运算符不能重载。 :: sizeof ?: . 这四个好理解,毕竟都学过,但.*是什么? 于是自己整理了一下 .* 是一种 C 中的运算符,称为指针到成…...

深度学习笔记——LSTM
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的LSTM知识点。 文章目录 LSTM(Long Short-Term Memory)LSTM 的核心部件LSTM 的公式和工作原理(1) 遗忘门&a…...
spring boot知识点2
1.spring boot 要开启一些特性,可通过什么方式开启 a.通过Enable注解,可启动定时服务 b.通过application.properties可设置端口号等地址信息 2.什么是热部署,以及spring boot通过什么方式进行热部署 热部署这个概念,我知道。就…...
【机器学习】CNN与Transformer的表面区别与本质区别
仅供参考 表面区别 1. 结构和原理: CNN:主要通过卷积层来提取特征,这些层通过滑动窗口(卷积核)捕捉局部特征,并通过池化层(如最大池化)来降低特征的空间维度。CNN非常适合处理具有网格状拓扑结构的数据,如图像。Transformer:基于自注意力(Self-Attention)机制,能…...

框架篇 - Hearth ArcGIS 框架扩展(DryIoC、Options、Nlog...)
框架篇 - Hearth ArcGISPro Addin 框架扩展(DryIoC、Options、Nlog…) 文章目录 框架篇 - Hearth ArcGISPro Addin 框架扩展(DryIoC、Options、Nlog...)1 使用IoC、DI1.1 服务注册1.1.1 `ServiceAttribute`服务特性1.2 依赖注入1.2.1 SDK底层创建实例类型依赖注入1.2.2 `In…...
JUC并发—7.AQS源码分析三
大纲 1.等待多线程完成的CountDownLatch介绍 2.CountDownLatch.await()方法源码 3.CountDownLatch.coutDown()方法源码 4.CountDownLatch总结 5.控制并发线程数的Semaphore介绍 6.Semaphore的令牌获取过程 7.Semaphore的令牌释放过程 8.同步屏障CyclicBarrier介绍 9.C…...

windows系统本地部署DeepSeek-R1全流程指南:Ollama+Docker+OpenWebUI
本文将手把手教您使用OllamaDockerOpenWebUI三件套在本地部署DeepSeek-R1大语言模型,实现私有化AI服务搭建。 一、环境准备 1.1 硬件要求 CPU:推荐Intel i7及以上(需支持AVX2指令集) 内存:最低16GB,推荐…...
当C#邂逅Deepseek, 或.net界面集成deepseek
最近,我开发了一个C#界面,并集成了Deepseek的接口功能,实现了本地化部署和流模式读取。 过程充满了挑战和乐趣,也让我深刻体会到Deepseek的强大之处。今天,我想和大家分享这段经历,希望能激发你对Deepseek的…...

Cursor实战:Web版背单词应用开发演示
Cursor实战:Web版背单词应用开发演示 需求分析自行编写需求文档借助Cursor生成需求文档 前端UI设计后端开发项目结构环境参数数据库设计安装Python依赖运行应用 前端代码修改测试前端界面 测试数据生成功能测试Bug修复 总结 在上一篇《Cursor AI编程助手不完全指南》…...

Kotlin Lambda
Kotlin Lambda 在探索Kotlin Lambda之前,我们先回顾下Java中的Lambda表达式,Java 的 Lambda 表达式是 Java 8 引入的一项强大的功能,它使得函数式编程风格的代码更加简洁和易于理解。Lambda 表达式允许你以一种更简洁的方式表示实现接口&…...
V4L2驱动之UVC
以下是关于V4L2摄像头驱动框架与UVC协议的关联分析,从内核驱动到用户空间的完整视角: 1. V4L2驱动框架核心架构 关键组件: 核心层 (V4L2 Core) v4l2_device:设备的总入口,管理所有子组件video_device:对应…...

numpy(01 入门)
前面内容:pandas(01 入门) 目录 一、numpy 简介 1.1 Numpy 应用场景 1.2 Numpy 优点 1.3 Numpy 缺点 1.4 相关链接 二、Numpy环境安装配置 2.1 Python自带包 2.2 Numpy 安装 三、NumPy.Ndarray 3.1 ndarray特点: 3.2 ndarray()参数&…...
Chatgpt论文润色指令整理
1. 内容润色 这个来自文章《three ways ChatGPT helps me in my academic writing》。 在输入你要润色的内容前,先输入以下内容来驯化chatgpt的身份: I’m writing a paper on [话题] for a leading [学科/杂志] academic journal. What I tried to s…...

vscode复制到下一行
linux中默认快捷键是ctrl shift alt down/up 但是在vscode中无法使用,应该是被其他的东西绑定了,经测试,可以使用windows下的快捷键shift alt down/up { “key”: “shiftaltdown”, “command”: “editor.action.copyLinesDownAction”…...
Python天梯赛刷题-五分题(上)
蓝桥杯题刷的好累,感觉零帧起手、以题带学真的会很吃力,打算重新刷一点天梯的题目巩固一下,我本人在算法非常不精通的情况下,自认为天梯的L1的题是会相对容易一些的,可能有一些没有脑子光靠力气的“硬推”hhhh。 从头…...
【优先级队列】任务分配
任务分配问题,有n个任务,每个任务有个达到时间。将这些任务分配给m个处理器,进行处理。每个处理器的处理时间不一样。处理器的任务列表有最大任务数限制。 分配任务的策略是:当前待分配的任务的处理时刻最小。如果处理时刻相同&am…...
设计模式之适配模式是什么?以及在Spring AOP中的拦截器链的使用源码解析。
前言 本文涉及到适配模式的基本用法,以及在Spring AOP中如何使用,首先需要了解适配模式的工作原理,然后结合Spring AOP的具体实现来详细详细解析源码。 首先,适配模式,也就是Adapter Pattern,属于结构型设计…...
Python 库自制 Cross-correlation 算法
Python 库自制 Cross-correlation 算法 引言正文引言 虽然 Scipy 库中包含了成熟的 Cross-correlation 算法,但是有些时候我们无法使用现成的库进行数据处理。这里介绍如何使用 Python 基础函数自制 Cross-correlation 算法。后续读者可以将该算法转换为其他各类语言。 正文…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...