当前位置: 首页 > news >正文

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现

目录

    • 分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测,运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.算法优化LSSVM参数为:sig,gamma。

4.excel数据集,main为主程序,其他为函数文件,无需运行,分类效果如下:

注:程序和数据放在一个文件夹。

程序设计

  • 完整程序和数据获取方式资源处直接下载MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   c = Best_pos(1);  
g = Best_pos(2);%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA%% 训练模型
model = trainlssvm(model);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现 目录 分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现MFO-LSSVM飞蛾扑火算法优化最小二…...

MyBatis Plus核心功能

一、条件构造器 1.为什么要学? 用于方便地构建SQL查询条件 2.如何使用? 3.实战案例 例:查询出名字中带o的,存款大于等于1000元的人的id,username,info,balance字段 数据库如图: 示例: Test void testL…...

nginx ngx_http_module(10) 指令详解

nginx ngx_http_module(10) 指令详解 nginx 模块目录 nginx 全指令目录 一、目录 1.1 模块简介 ngx_http_v2_module:HTTP/2支持模块,允许Nginx通过HTTP/2协议与客户端进行通信。HTTP/2带来了许多性能优化,如多路复用、头部压缩和服务器推…...

【ENSP】链路聚合的两种模式

【ENSP】链路聚合的两种模式 1、背景介绍2、链路聚合的使用场景3、配置过程1、手工模式Eth-Trunk配置2、静态LACP模式Eth-Trunk 4、总结 1、背景介绍 随着网络规模的不断扩大,人们对骨干链路的带宽吞吐量和可靠性提出了越来越高的要求。在传统方案中,为…...

Windows环境安装部署minimind步骤

Windows环境安装部署minimind步骤 必要的软件环境 git git,可下载安装版,本机中下载绿色版,解压到本地目录下(如:c:\soft\git.win64),可将此路径添加到PATH环境变量中,供其他程序…...

让大模型帮我设计crnn网络及可运行demo,gpt4o豆包qwendeepseek-r1

prompt 使用 crnn 提取图像特征,给出图像好坏的二分类结果,写清楚代码备注,注释清楚向量维度大小,并给出一个可运行的 demo1、GPT-4o 以下是一个使用 CRNN(Convolutional Recurrent Neural Network)提取图…...

代码随想录-- 第一天图论 --- 岛屿的数量

99 统计岛屿的数量 c 99. 岛屿数量 #include <iostream> #include <vector> #include <queue>using namespace std;struct MGraph {int numVertices, numEdges;vector<vector<int>> Edge; };int dir[4][2] {{1, 0}, {0, 1}, {-1, 0}, {0, -1}…...

Mybatis MyBatis框架的缓存 一级缓存

1. 缓存的概念 缓存的概念 在内存中临时存储数据&#xff0c;速度快&#xff0c;可以减少数据库的访问次数。经常需要查询&#xff0c;不经常修改的数据&#xff0c;不是特别重要的数据都适合于存储到缓存中。 2.Mybatis缓存 mybatis包含了一个非常强大的查询缓存特性&#…...

Weboffice在线Word权限控制:限制编辑,只读、修订、禁止复制等

在现代企业办公中&#xff0c;文档编辑是一项常见且重要的任务。尤其是在线办公环境中&#xff0c;员工需要在网页中打开和编辑文档&#xff0c;但如何确保这些文档只能进行预览而无法被编辑或复制&#xff0c;成为许多企业面临的一个痛点。尤其是在处理涉密文档时&#xff0c;…...

RT-Thread+STM32L475VET6实现呼吸灯

文章目录 前言一、板载资源资源说明二、具体步骤1.新建rt_thread项目2. 打开PWM设备驱动3. 在Stm32CubeMX配置定时器3.1打开Stm32CubeMX3.2 使用外部高速时钟&#xff0c;并修改时钟树3.3打开定时器1&#xff0c;并配置通道一为PWM输出模式(定时器根据自己需求调整)3.4 打开串口…...

【Web前端开发精品课 HTML CSS JavaScript基础教程】第二十四章课后题答案

文章目录 问题1&#xff1a;问题2&#xff1a;问题3&#xff1a; 问题1&#xff1a; 在HTML中嵌入JavaScript&#xff0c;应该使用的标签是&#xff08; &#xff09;。 选项&#xff1a; A. <style></style> B. <script></script> C. <js><…...

记录 pycharm 无法识别提示导入已有的模块解决方案 No module named ‘xxx‘

在windows下&#xff0c;使用pycharm开发项目&#xff0c;每个项目都有自己独立的虚拟环境&#xff0c;有时候就会出现&#xff0c;在该项目中明明已经安装了某个模块&#xff0c;但是在写代码的时候就是导入不了&#xff0c;无法识别导入&#xff0c;在运行的时候却又是正常的…...

网工项目实践2.6 广域网需求分析及方案制定

本专栏持续更新&#xff0c;整一个专栏为一个大型复杂网络工程项目。阅读本文章之前务必先看《本专栏必读》。 全网拓扑展示 一.广域网互联方式 1.专线 优点 稳定 独享。绝对安全。可靠性高&#xff0c;带宽高&#xff0c;完全取决于终端接口。 缺点: 费用高。建设时间长。难…...

【架构】分层架构 (Layered Architecture)

一、分层模型基础理论 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/0365cf0bfa754229bdedca6b472bffc7.png 1. 核心定义 分层架构(Layered Architecture)模型是一种常见的软件设计架构,它将软件系统按照功能划分为不同的层次,每个层次都有特定的职责和功能…...

玩客云 IP查找

1.玩客云使用静态IP在不同网段路由器下不能使用&#xff0c;动态不好找IP地址 1.1使用python3 实现自动获取发送 import requests import os import socket# 从环境变量获取 PushPlus 的 token 和群组编码 PUSH_PLUS_TOKEN os.getenv("PUSH_PLUS_TOKEN") PUSH_PLU…...

Android - Handler使用post之后,Runnable没有执行

问题&#xff1a;子线程创建的Handler。如果 post 之后&#xff0c;在Handler.removeCallbacks(run)移除了&#xff0c;下次再使用Handler.postDelayed(Runnable)接口或者使用post时&#xff0c;Runnable是没有执行。导致没有收到消息。 解决办法&#xff1a;只有主线程创建的…...

MyBatis-Plus之通用枚举

MyBatis-Plus之通用枚举 前言 MyBatis-Plus中提供了通用枚举&#xff0c;简单来说就是将数据库中的某一字段的代替的含义转换成真实的含义将数据展示给用户&#xff0c;用户在存储时也会将真实值转换成代替的数字存入到数据库中。举个例子&#xff1a;用户性别在数据库中存储…...

基于Spring Boot的图书管理系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

如何在 VS Code 中快速使用 Copilot 来辅助开发

在日常开发中&#xff0c;编写代码往往是最耗时的环节之一。而 GitHub Copilot&#xff0c;作为一款 AI 编码助手&#xff0c;可以帮助开发者 自动补全代码、生成代码片段&#xff0c;甚至直接编写完整的函数&#xff0c;大幅提升编码效率。那么&#xff0c;如何在 VS Code 中快…...

12.1 Android中协程的基本使用

文章目录 前言1、导入依赖2、使用协程获取服务器中的数据2.1 定义请求回调结果的数据类2.2 网络请求 3、网络回调结构4、通过ViewModel处理网络请求数据 前言 在使用协程的时候一直没有一个具体的概念&#xff0c;只知道协程能够使得异步操作等同于同步操作&#xff0c;且不会…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python&#xff0c;或者java 的大型项目中&#xff0c;都会涉及到 自身平台微服务之间的相互调用&#xff0c;以及和第三发平台的 接口对接&#xff0c;那在python 中是怎么实现的呢&#xff1f; 在 Python Web 开发中&#xff0c;FastAPI 和 Django 是两个重要但定位不…...