【机器学习】衡量线性回归算法最好的指标:R Squared
衡量线性回归算法最好的指标:R Squared
- 一、摘要
- 二、回归算法评价指标与R Squared指标介绍
- 三、R Squared的编程实践
一、摘要
本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标——R Squared(R方)。R方用于比较模型预测结果与实际结果的拟合程度,其值范围在0到1之间,越接近1表示模型预测效果越好。R方的计算涉及预测误差与总误差的比较,其中分子为预测误差的平方和,分母为总误差的平方和。当R方等于1时,表示模型预测无误差;小于零则表明模型效果不佳,可能不适合线性回归。 此外,还介绍了如何通过编程实践计算R方值,并在不同的机器学习库中实现该指标的计算。最后,强调了R方作为衡量线性回归模型性能的关键指标的重要性。
二、回归算法评价指标与R Squared指标介绍
-
之前的博文中介绍了评价回归算法优劣的三个指标:MSE(均方误差)、RMSE(均方根误差)和MAE(平均绝对误差)。这些指标存在的问题:
无法直接比较不同问题的预测误差。分类问题的评价指标简单明了,取值在0到1之间,而回归算法的指标没有这样的性质。 -
R Squared(R方) 是一个解决上述问题的新指标。
计算方法:1减去两个量的比值,分子是残差平方和,分母是总平方和。

- R方计算步骤:计算残差平方和与总平方和,代入公式计算R方值。
- 残差平方和:
预测结果减去真实值的平方和。 - 总平方和:
真实值与均值差的平方和。
R Squared的优势:
- R方将回归问题的衡量结果归约到0到1之间,便于比较不同模型的性能。
- R方越大越好,越接近1表示模型预测越准确。
- R方小于零表示模型预测效果不如基准模型。
- 可能意味着数据间不存在线性关系,需要考虑其他回归方法。
R Squared的统计意义:
- R方可以表示为1减去均方误差(MSE)与方差的比值。
- 均方误差:预测结果与真实值的平方差均值。
- 方差:真实值的方差。
- R方衡量模型与基准模型的差异,值越大表示模型预测越准确。



最后这张图将公式的含义是:1 - (MSE(均方误差)/ Var(方差)
三、R Squared的编程实践
- 计算R方的编程实践:使用NumPy、SciPy或sklearn等库进行计算。
- 示例代码:计算简单线性回归模型的R方值。
执行结果:import openml import numpy as np# 从 openml 获取波士顿房价数据集 dataset = openml.datasets.get_dataset(531) X, y, categorical_indicator, attribute_names = dataset.get_data(target=dataset.default_target_attribute, dataset_format='dataframe' )# 这里只用RM这个特征来计算,提取RM列特征数据 boston_datas = X.iloc[:,5]# 分布在50那里的一些点,可能不是真实的点,比如问卷调查中通过会设置一些上限点,而往往这些不是真实存在的额点,因此可以去除 y_normal = y[y < 50.0] x_normal = boston_datas[y < 50.0]import sys # 替换为你的 PyCharm 工程实际路径 project_path = 'D:/PycharmProjects/pythonProject/' if project_path not in sys.path:sys.path.append(project_path)# 拆分训练集和测试集 from model_selection import train_test_split X_train,y_train,X_test,y_test = train_test_split(np.array(x_normal),np.array(y_normal),seed=666)# 引入我们自己实现的线性回归模型 from SimpleLinearRegressionDemo import SimpleLinearRegressionModel reg1 = SimpleLinearRegressionModel() reg1.fit(X_train,y_train)# 预测结果 y_predict = reg1.predict(X_test)# scikit-learn来计算均方误差和绝对值误差 from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error# 根据公式先计算分子: MSE 均方误差 n_mse = mean_squared_error(y_pred=y_predict,y_true=y_test) # 根据公式先计算分母: 测试集的方差 d_var = np.var(y_test)# 带入公式,得到R Squared值 ret_pred = 1 - n_mse / d_var ret_pred0.6129316803937324


相关文章:
【机器学习】衡量线性回归算法最好的指标:R Squared
衡量线性回归算法最好的指标:R Squared 一、摘要二、回归算法评价指标与R Squared指标介绍三、R Squared的编程实践 一、摘要 本文主要介绍了线性回归算法中用于衡量模型优劣的重要指标——R Squared(R方)。R方用于比较模型预测结果与实际结…...
设计模式-Java
一、创建型模式 1. 单例模式 定义 确保一个类只有一个实例,并提供一个全局访问点。 实现方式 饿汉式(线程安全,但可能浪费资源) public class Singleton {// 静态变量,类加载时初始化private static final Singlet…...
代码讲解系列-CV(五)——语义分割基础
文章目录 一、图像分割标注1.1 Labelme标注1.2 SAM辅助1.3 json格式 二、数据解析2.1 Dataset2.2 train.py2.2.1 取参2.2.2 分割和数据集的读取 三、Unet网络搭建3.1 Unet3.2 Network 四、损失函数和指标4.1 DICE系数4.2 损失函数4.3 半精度训练 五、SAM六、作业 语义分割是图片…...
在mfc中使用自定义三维向量类和计算多个三维向量的平均值
先添加一个普通类, Vector3.h, // Vector3.h: interface for the Vector3 class. // //#if !defined(AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_) #define AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_#if _MSC_VER > 1000 #p…...
RDMA ibverbs_API功能说明
设备管理 获取当前活动网卡 返回当前rdma设备列表 struct ibv_device **ibv_get_device_list(int *num_devices);//使用 struct ibv_device **dev_list ibv_get_device_list(NULL);获取网卡名 返回网卡名字字符串:如"mlx5_0",一般通过网卡…...
【C++语言】string 类
一、为什么要学习 string 类 C语言中,字符串是以 “\0” 结尾的一些字符的集合,为了操作方便,C标准库中提供了一些 str 系列的库函数,但是这些库函数与字符串是分离开的,不太符合 OOP 的思想,而且底层空间需…...
快速上手gdb/cgdb
Linux调试器-gdb使用 1.背景2.调试原理、技巧命令2.1指令2.2 本质2.3 技巧 1.背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g…...
《养生》(二)
一、基础生活调整 1.作息规律 固定每天7-8小时睡眠,尽量22:30前入睡,晨起后拉开窗帘晒太阳5分钟,调节生物钟 2.饮食优化 三餐定时,每餐细嚼慢咽20次以上,优先吃蔬菜和蛋白质(如鸡蛋、豆腐&#x…...
JAVA:集成 Drools 业务规则引擎的技术指南
1、简述 Drools 是一个强大的业务规则引擎,适用于需要动态决策或规则管理的场景。它允许开发人员将业务逻辑与应用代码分离,使得业务人员可以通过规则文件维护和更新规则,而无需修改应用代码。本文将介绍 Drools 的基本概念、配置方式&#…...
GeoHD - 一种用于智慧城市热点探测的Python工具箱
GeoHD - 一种用于智慧城市热点探测的Python工具箱 详细原理请参考:Yan, Y., Quan, W., Wang, H., 2024. A data‐driven adaptive geospatial hotspot detection approach in smart cities. Trans. GIS tgis.13137. 代码下载:下载 1. 简介 在城市数据…...
记一次Ngnix配置
记一次Ngnix配置 配置Ngnix配置防火墙 假设一个服务器中有一个公网IP、一个内网IP,另外已经部署好后台服务的接口地址为http://内网ip:8088。 配置Ngnix 找到Ngnix的配置文件,通过在Ngnix的安装路径下的 \conf\nginx.conf 文件。 worker_processes 1;…...
2024年国赛高教杯数学建模C题农作物的种植策略解题全过程文档及程序
2024年国赛高教杯数学建模 C题 农作物的种植策略 原题再现 根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济的可持续发展具有重要的现实意义。选择适宜的农作物,优化种植策略&…...
java基础语知识(8)
类之间的关系 在类之间,最常见的关系有: 依赖(“uses-a”);聚合(“has-a”);继承(“is-a”)。 依赖:一种使用关系,即一个类的实现需要另一个类的协助&#x…...
室内定位精度方案对比
室内定位精度方案对比:成本、开发难度与精度的权衡 索引 引言 Wi-Fi 定位方案 定位原理 成本分析 开发难度 定位精度 蓝牙定位方案 定位原理 成本分析 开发难度 定位精度 超宽带(UWB)定位方案 定位原理 成本分析 开发难度 定…...
Pytorch深度学习教程_5_编写第一个神经网络
欢迎来到《pytorch深度学习教程》系列的第五篇!在前面的四篇中,我们已经介绍了Python、numpy及pytorch的基本使用,并在上一个教程中介绍了梯度。今天,我们将探索神经网络,对于神经网络进行概述并进行简单的实践学习 欢…...
ImportError: cannot import name ‘FixtureDef‘ from ‘pytest‘
错误信息表明 pytest 在尝试导入 FixtureDef 时出现了问题。通常是由于 pytest 版本不兼容 或 插件版本冲突 引起的。以下是详细的排查步骤和解决方案: 1. 检查 pytest 版本 首先,确认当前安装的 pytest 版本。某些插件可能需要特定版本的 pytest 才能…...
改BUG:Mock测试的时候,when失效
问题再现: 这里我写了一测试用户注册接口的测试类,并通过when模拟下层的服务,但实际上when并没有奏效,还是走了真实的service层的逻辑。 package cn.ac.evo.review.test;import cn.ac.evo.review.user.UserMainApplication; imp…...
【自动化脚本工具】AutoHotkey (Windows)
目录 1. 介绍AutoHotkey2. 功能脚本集锦2.1 桌面键盘显示 1. 介绍AutoHotkey 支持Windows安装使用,下载地址为:https://www.autohotkey.com/ 2. 功能脚本集锦 2.1 桌面键盘显示 便于练习键盘盲打 脚本地址:https://blog.csdn.net/weixin_6…...
专题--Linux体系
Linux体系结构相关| ProcessOn免费在线作图,在线流程图,在线思维导图 ProcessOn是一个在线协作绘图平台,为用户提供强大、易用的作图工具!支持在线创作流程图、思维导图、组织结构图、网络拓扑图、BPMN、UML图、UI界面原型设计、iOS界面原型设计等。同时…...
【DeepSeek】Mac m1电脑部署DeepSeek
一、电脑配置 个人电脑配置 二、安装ollama 简介:Ollama 是一个强大的开源框架,是一个为本地运行大型语言模型而设计的工具,它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
