当前位置: 首页 > news >正文

第1章:LangChain4j的聊天与语言模型

LangChain4J官方文档翻译与解析
目标文档路径:
https://docs.langchain4j.dev/tutorials/chat-and-language-models/

  1. 语言模型的两种API类型
    LangChain4j支持两种语言模型(LLM)的API:
    LanguageModel:这种API非常简单,它接受一个字符串作为输入,并返回一个字符串作为输出。这种API正在逐渐被聊天API(第二种API类型)取代。
    ChatLanguageModel:这种API接受多个ChatMessage作为输入,并返回一个AiMessage作为输出。ChatMessage通常包含文本,但某些LLM还支持其他模态(例如图像、音频等)。例如,OpenAI的gpt-4o-mini和Google的gemini-1.5-pro就是支持这种多模态的聊天模型。
    LangChain4j不再扩展对LanguageModel的支持,所有新功能都将使用ChatLanguageModel API。ChatLanguageModel是LangChain4j中与LLM交互的低级API,提供了最大的灵活性和功能。此外,LangChain4j还支持其他类型的模型,例如:
    EmbeddingModel:将文本转换为嵌入向量。
    ImageModel:生成和编辑图像。
    ModerationModel:检查文本是否包含有害内容。
    ScoringModel:对多段文本进行评分或排名,以确定它们与查询的相关性。这对于检索增强型生成(RAG)非常有用。
  2. ChatLanguageModel API
    ChatLanguageModel API的核心是generate方法,它接受一个或多个ChatMessage作为输入,并返回一个AiMessage。ChatMessage是一个基础接口,代表聊天消息,有以下几种类型:
    UserMessage:用户发送的消息,可以是文本或其他模态内容。
    AiMessage:AI生成的消息,通常是对UserMessage的回应。
    ToolExecutionResultMessage:工具执行请求的结果。
    SystemMessage:系统消息,通常由开发者定义,用于指定LLM在对话中的角色、行为风格等。LLM会更关注SystemMessage,因此不要让用户随意修改或注入内容。
  3. 多轮对话的管理
    由于LLM本身是无状态的,因此需要开发者手动管理对话状态。例如,一个简单的多轮对话如下:
    用户:你好,我叫Klaus。
    AI:你好Klaus,我能帮你什么?
    用户:我的名字是什么?
    AI:Klaus。
    在ChatLanguageModel中,需要将之前的对话消息传递给generate方法,以维护对话上下文。例如:
    java复制
    UserMessage firstUserMessage = UserMessage.from(“你好,我叫Klaus”);
    AiMessage firstAiMessage = model.generate(firstUserMessage).content();
    UserMessage secondUserMessage = UserMessage.from(“我的名字是什么?”);
    AiMessage secondAiMessage = model.generate(firstUserMessage, firstAiMessage, secondUserMessage).content();
  4. 多模态支持
    UserMessage不仅可以包含文本,还可以包含其他类型的内容,例如图像、音频、视频或PDF文件。例如,发送文本和图像的代码如下:
    java复制
    UserMessage userMessage = UserMessage.from(
    TextContent.from(“描述下面的图像”),
    ImageContent.from(“https://example.com/cat.jpg”)
    );
    Response response = model.generate(userMessage);
  5. Kotlin扩展
    LangChain4j为Kotlin提供了扩展,支持异步处理聊天交互。这些扩展利用Kotlin的协程功能,提供了chatAsync和generateAsync方法,简化了聊天请求的构建和对话处理。
    总结
    这篇文章主要介绍了LangChain4j中与语言模型和聊天模型相关的API。它强调了ChatLanguageModel的重要性,并详细解释了如何通过ChatMessage管理多轮对话、支持多模态输入,以及如何利用Kotlin扩展进行异步处理。这些功能使得LangChain4j在构建聊天应用时更加灵活和强大。

相关文章:

第1章:LangChain4j的聊天与语言模型

LangChain4J官方文档翻译与解析 目标文档路径: https://docs.langchain4j.dev/tutorials/chat-and-language-models/ 语言模型的两种API类型 LangChain4j支持两种语言模型(LLM)的API: LanguageModel:这种API非常简单,…...

Cython学习笔记1:利用Cython加速Python运行速度

Cython学习笔记1:利用Cython加速Python运行速度 CythonCython 的核心特点:利用Cython加速Python运行速度1. Cython加速Python运行速度原理2. 不使用Cython3. 使用Cython加速(1)使用pip安装 cython 和 setuptools 库(2&…...

【从0做项目】Java音缘心动(1)———项目介绍设计

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 零:项目结果展示 一:音乐播放器Web网页介绍 二:前期准备工作&…...

智慧农业新生态 | 农业数字化服务平台——让土地生金,让服务无忧

一部手机管农事,从播种到丰收,全链路数字化赋能! 面向农户、农机手、农服商、农资商打造的一站式农业产业互联网平台,打通农资交易、农机调度、农服管理、技术指导全场景闭环,助力乡村振兴提效增收。 三大核心场景&am…...

C++编程,#include <iostream>详解,以及using namespace std;作用

在C编程中&#xff0c;#include <iostream> 是用来包含输入/输出流头文件的预处理指令。它允许程序使用标准的输入/输出对象如 std::cout 和 std::cin&#xff0c;以便与标准输入和输出流进行交互。这一头文件是编写输入输出操作时必不可少的部分。 讲到这里&#xff0c…...

jetbrains IDEA集成大语言模型

一、CodeGPT ‌CodeGPT‌是由CSDN打造的一款生成式AI产品&#xff0c;专为开发者量身定制。它能够提供强大的技术支持&#xff0c;帮助开发者在学习新技术或解决实际工作中的各种计算机和开发难题‌1。 idea集成 1.在线安装&#xff1a;直接在线安装 2.离线安装 JetBrains Mar…...

理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)

之前一直不是很理解这个公式为什么用这个精度矩阵&#xff0c;为什么这么巧合&#xff0c;为什么是它&#xff0c;百思不得其解&#xff0c;最近有了一些新的理解&#xff1a; 1. 这个精度矩阵相对公平合理的用统一的方式衡量了变量间的关系&#xff0c;但是如果是公平合理的衡…...

使用 Spark NLP 实现中文实体抽取与关系提取

在自然语言处理(NLP)领域,实体抽取和关系提取是两个重要的任务。实体抽取用于从文本中识别出具有特定意义的实体(如人名、地名、组织名等),而关系提取则用于识别实体之间的关系。本文将通过一个基于 Apache Spark 和 Spark NLP 的示例,展示如何实现中文文本的实体抽取和…...

less-8 boolen盲注,时间盲注 函数补全

获取当前数据库名 import requestsdef inject_database(url):namemax_length20 # 假设数据库名称最大长度为20# ASCII范围&#xff1a;数字、字母、下划线&#xff08;_&#xff09;low{a: 97, z: 122, A: 65, Z: 90, 0: 48, 9: 57, _: 95}high{97: a, 122: z, 65: A, 90: Z,…...

[NKU]C++基础课(五)补充:结构体

【3.3】C结构体介绍_哔哩哔哩_bilibili 结构体 最厉害的学生 现有N名同学参加了期末考试&#xff0c;并且获得了每名同学的信息: 1 姓名(不超过8个字符的仅有英文小写字母的字符串) 2 语文、数学、英语成绩(均为不超过150的自然数)。 3 总分最高的学生就是最厉害的。 请输…...

亲测可用,IDEA中使用满血版DeepSeek R1!支持深度思考!免费!免配置!

作者&#xff1a;程序员 Hollis 之前介绍过在IDEA中使用DeepSeek的方案&#xff0c;但是很多人表示还是用的不够爽&#xff0c;比如用CodeChat的方案&#xff0c;只支持V3版本&#xff0c;不支持带推理的R1。想要配置R1的话有特别的麻烦。 那么&#xff0c;今天&#xff0c;给…...

springcloud整合seata

1、前置安装与了解&#xff1a; 1、nacos的安装&#xff1a;docker安装nacos并挂载 2、seata的安装&#xff1a;docker安装seata并挂载&#xff0c;同时注册到nacos 3、spring-boot版本为2.6.12&#xff0c;spring-cloud-alibaba版本为2021.0.4.0&#xff0c;spring-cloud版本…...

Html5学习教程,从入门到精通,HTML5 简介语法知识点及案例代码(1)

HTML5 简介 HTML5 是最新的 HTML 标准&#xff0c;它引入了许多新特性&#xff0c;使网页开发更加强大和灵活。以下是一些关键的 HTML5 语法知识点&#xff1a; 1. 文档类型声明 (DOCTYPE) HTML5 的文档类型声明非常简单&#xff1a; <!DOCTYPE html>2. 字符编码 HT…...

Django加bootstrap实现上传文件含有进度条

1. 项目结构 myproject/ ├── myproject/ │ ├── settings.py │ ├── urls.py │ └── ... ├── myapp/ │ ├── templates/ │ │ └── upload.html │ ├── views.py │ ├── urls.py │ └── ... └── media/ # 手动创…...

八大排序算法(2)交换排序-冒泡排序 和 快速排序

快速排序&#xff08;Quick Sort&#xff09; 和 冒泡排序&#xff08;Bubble Sort&#xff09; 都是常见的交换排序算法&#xff0c;它们的核心思想都是通过交换元素来实现排序。但是&#xff0c;它们的工作原理和性能差异非常大。下面我们来详细对比这两种排序算法&#xff1…...

Python的那些事第二十三篇:Express(Node.js)与 Python:一场跨语言的浪漫邂逅

摘要 在当今的编程世界里,Node.js 和 Python 像是两个性格迥异的超级英雄,一个以速度和灵活性著称,另一个则以强大和优雅闻名。本文将探讨如何通过 Express 框架将 Node.js 和 Python 结合起来,打造出一个高效、有趣的 Web 应用。我们将通过一系列幽默风趣的实例和表格,展…...

STM32MP157A单片机移植Linux驱动

在stm32mp157a单片机移植Linux操作系统&#xff0c;并移植内核驱动&#xff0c;在应用程序中使用3个线程&#xff0c;分别实现控制单片机上3个led流水灯的功能、蜂鸣器控制的功能、风扇控制的功能。 需求整理&#xff1a; 1.驱动程序-->led1.c&#xff0c;led2.c&#xff…...

Qt程序退出相关资源释放问题

目录 问题背景&#xff1a; aboutToQuit 代码举例 closeEvent事件 代码举例 程序退出方式 quit() exit(int returnCode 0) close() 问题背景&#xff1a; 实际项目中程序退出前往往需要及进行一些资源释放、配置保存、线程中断等操作&#xff0c;避免资源浪费&#xff…...

【大学生职业规划大赛备赛PPT资料PDF | 免费共享】

自取链接&#xff1a; 链接&#xff1a;https://pan.quark.cn/s/4fa45515325e &#x1f4e2; 同学&#xff0c;你是不是正在为职业规划大赛发愁&#xff1f; 想展示独特思路却不知如何下手&#xff1f; 想用专业模板却找不到资源&#xff1f; 别担心&#xff01;我整理了全网…...

win32汇编环境,对话框中使用菜单示例一

;运行效果 ;win32汇编环境,对话框中使用菜单示例一 ;最基本的应用&#xff0c;即添加菜单及点击后响应的操作方法 ;直接抄进RadAsm可编译运行。重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>>>>>>&g…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物&#xff0c;因为每个访问一个线程局部变量的线程&#xff08;通过其 get 或 set 方法&#xff09;都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段&#xff0c;这些类希望将…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...

ubuntu中安装conda的后遗症

缘由: 在编译rk3588的sdk时&#xff0c;遇到编译buildroot失败&#xff0c;提示如下&#xff1a; 提示缺失expect&#xff0c;但是实测相关工具是在的&#xff0c;如下显示&#xff1a; 然后查找借助各个ai工具&#xff0c;重新安装相关的工具&#xff0c;依然无解。 解决&am…...