PyTorch Tensor 形状变化操作详解
PyTorch Tensor 形状变化操作详解
在深度学习中,Tensor 的形状变换是非常常见的操作。PyTorch 提供了丰富的 API 来帮助我们调整 Tensor 的形状,以满足模型输入、计算或数据处理的需求。本文将详细介绍 PyTorch 中常见的 Tensor 形状变换操作,并通过示例代码进行说明。
1. 基础形状操作
1.1 view 和 reshape
- 功能:改变 Tensor 的形状而不改变其数据。
- 区别:
view要求新形状的总元素数与原形状一致,否则会报错。reshape更灵活,如果无法直接改变形状,会尝试创建一个新的 Tensor。
- 示例:
tensor = torch.randn(2, 3, 4) # 原形状为 (2, 3, 4)
reshaped_tensor = tensor.view(2, 12) # 改变形状为 (2, 12)
print(reshaped_tensor.shape) # 输出: torch.Size([2, 12])
1.2 squeeze 和 unsqueeze
- 功能:
squeeze:移除大小为 1 的维度。unsqueeze:在指定位置插入大小为 1 的维度。
- 示例:
tensor = torch.randn(1, 3, 1, 4) # 原形状为 (1, 3, 1, 4)
squeezed_tensor = tensor.squeeze() # 移除所有大小为 1 的维度
print(squeezed_tensor.shape) # 输出: torch.Size([3, 4])unsqueezed_tensor = squeezed_tensor.unsqueeze(0) # 在第 0 维插入大小为 1 的维度
print(unsqueezed_tensor.shape) # 输出: torch.Size([1, 3, 4])
2. 高级形状操作
2.1 permute
- 功能:重新排列 Tensor 的维度顺序。
- 示例:
tensor = torch.randn(2, 3, 4) # 原形状为 (2, 3, 4)
permuted_tensor = tensor.permute(2, 0, 1) # 调整为 (4, 2, 3)
print(permuted_tensor.shape) # 输出: torch.Size([4, 2, 3])
2.2 transpose
- 功能:交换指定的两个维度。
- 示例:
tensor = torch.randn(3, 4) # 原形状为 (3, 4)
transposed_tensor = tensor.transpose(0, 1) # 交换第 0 和第 1 维度
print(transposed_tensor.shape) # 输出: torch.Size([4, 3])
2.3 flatten
- 功能:将指定范围内的维度展平为一维。
- 示例:
tensor = torch.randn(2, 3, 4) # 原形状为 (2, 3, 4)
flattened_tensor = tensor.flatten(start_dim=1) # 展平从第 1 维开始
print(flattened_tensor.shape) # 输出: torch.Size([2, 12])
2.4 repeat
- 功能:沿指定维度重复 Tensor。
- 示例:
tensor = torch.tensor([[1, 2], [3, 4]]) # 原形状为 (2, 2)
repeated_tensor = tensor.repeat(2, 3) # 在第 0 维重复 2 次,在第 1 维重复 3 次
print(repeated_tensor.shape) # 输出: torch.Size([4, 6])
2.5 expand
- 功能:在不复制数据的情况下扩展 Tensor 的形状(仅适用于大小为 1 的维度)。
- 示例:
tensor = torch.tensor([[1], [2], [3]]) # 原形状为 (3, 1)
expanded_tensor = tensor.expand(3, 4) # 扩展为 (3, 4)
print(expanded_tensor)
# 输出:
# tensor([[1, 1, 1, 1],
# [2, 2, 2, 2],
# [3, 3, 3, 3]])
3. 数据提取与分散
3.1 narrow
- 功能:按指定维度和范围提取部分 Tensor。
- 示例:
tensor = torch.arange(10) # 原形状为 (10,)
narrowed_tensor = tensor.narrow(0, 2, 4) # 从第 0 维索引 2 开始提取长度为 4 的部分
print(narrowed_tensor) # 输出: tensor([2, 3, 4, 5])
3.2 gather
- 功能:根据索引从指定维度收集元素。
- 示例:
tensor = torch.tensor([[1, 2], [3, 4]]) # 原形状为 (2, 2)
indices = torch.tensor([[0, 1], [1, 0]]) # 索引矩阵
gathered_tensor = torch.gather(tensor, 1, indices) # 按列索引收集
print(gathered_tensor)
# 输出:
# tensor([[1, 2],
# [4, 3]])
3.3 scatter
- 功能:根据索引将值分散到目标 Tensor 中。
- 示例:
tensor = torch.zeros(2, 3) # 目标 Tensor,初始为零
indices = torch.tensor([[0, 1, 2], [2, 0, 1]]) # 索引矩阵
values = torch.tensor([[5, 6, 7], [8, 9, 10]]) # 值矩阵
scattered_tensor = tensor.scatter(1, indices, values) # 按列分散赋值
print(scattered_tensor)
# 输出:
# tensor([[5., 6., 7.],
# [0., 9., 8.]])
4. 对角操作
4.1 diag
- 功能:提取对角线元素或将一维 Tensor 转换为对角矩阵。
- 示例:
tensor = torch.tensor([1, 2, 3]) # 一维 Tensor
diag_tensor = torch.diag(tensor) # 创建对角矩阵
print(diag_tensor)
# 输出:
# tensor([[1, 0, 0],
# [0, 2, 0],
# [0, 0, 3]])
相关文章:
PyTorch Tensor 形状变化操作详解
PyTorch Tensor 形状变化操作详解 在深度学习中,Tensor 的形状变换是非常常见的操作。PyTorch 提供了丰富的 API 来帮助我们调整 Tensor 的形状,以满足模型输入、计算或数据处理的需求。本文将详细介绍 PyTorch 中常见的 Tensor 形状变换操作࿰…...
文字识别软件cnocr学习笔记
• 安装 pip install cnocr • 基础的使用方法 首次运行会下载安装模型,如果没有梯子,会报错: 在网络上查找cnocr的模型资源,并下载到本地。https://download.csdn.net/download/qq_33464428/89514689?ops_request_misc%257B%2…...
本地部署DeepSeek R1 + 界面可视化open-webui【ollama容器+open-webui容器】
本地部署DeepSeek R1 界面可视化open-webui 本文主要讲述如何用ollama镜像和open-webui镜像部署DeepSeek R1, 镜像比较方便我们在各个机器之间快速部署。 显卡推荐 模型版本CPU内存GPU显卡推荐1.5B4核8GB非必需4GBRTX1650、RTX20607B、8B8核16GB8GBRTX3070、RTX…...
macOS部署DeepSeek-r1
好奇,跟着网友们的操作试了一下 网上方案很多,主要参考的是这篇 DeepSeek 接入 PyCharm,轻松助力编程_pycharm deepseek-CSDN博客 方案是:PyCharm CodeGPT插件 DeepSeek-r1:1.5b 假设已经安装好了PyCharm PyCharm: the Pyth…...
基于STM32与BD623x的电机控制实战——从零搭建无人机/机器人驱动系统
系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 一、为什么选择这两个芯片?1.1 STM32微控制器1.2 ROHM BD623x电机驱动 二、核心控制原理详解2.1 H桥驱动奥…...
基于ffmpeg+openGL ES实现的视频编辑工具-字幕添加(六)
在视频编辑领域,字幕的添加是一项极为重要的功能,它能够极大地丰富视频内容,提升观众的观看体验。当我们深入探究如何实现这一功能时,FreeType 开源库成为了强大助力。本文将详细阐述借助 FreeType 库生成字幕数据的过程,以及如何实现字幕的缩放、移动、旋转、颜色修改、对…...
C++中const T为什么少见?它有什么用途?
在C中,右值引用(T&&)是移动语义和完美转发的核心特性之一,但你是否注意到,const T&&(const右值引用)却很少被使用?它到底有什么用途? 今天我们就来深入…...
Leetcode 位计算
3095. 或值至少 K 的最短子数组 I 3097. Shortest Subarray With OR at Least K II class Solution:def minimumSubarrayLength(self, nums: List[int], k: int) -> int:n len(nums)bits [0] * 30res infdef calc(bits):return sum(1 << i for i in range(30) if…...
SpringBoot3.x整合WebSocket
SpringBoot3.x整合WebSocket 本文主要介绍最新springboot3.x下如何整合WebSocket. WebSocket简述 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议,它允许在浏览器和服务器之间进行实时的、双向的通信。相对于传统的基于请求和响应的 HTTP 协议ÿ…...
猿大师办公助手对比其他WebOffice在线编辑Office插件有什么优势
1. 原生Office功能完整嵌入,排版一致性保障 猿大师办公助手直接调用本地安装的微软Office、金山WPS或永中Office,支持所有原生功能(如复杂公式、VBA宏等),确保网页编辑与本地打开的文档排版完全一致。 提供OLE嵌入和完…...
STM32创建静态库lib
创建静态库lib 1. 新建工程1.1 创建工程文件夹1.2 编写用户相关代码1.2.1 stm32f4xx_it.h1.2.2 stm32f4xx_it.c1.2.3 标准库配置:stm32f4xx_conf.h1.2.4 HAL库的配置:stm32f4xx_hal_conf.h1.2.5 LL库配置:stm32f4xx_ll_conf.h 1.3 移植通用文…...
Hive JOIN过滤条件位置玄学:ON vs WHERE的量子纠缠
Hive JOIN过滤条件位置玄学:ON vs WHERE的量子纠缠 作为数据工程师,Hive JOIN就像吃火锅选蘸料——放错位置味道全变!今天带你破解字节/阿里等大厂高频面试题:ON和WHERE后的过滤条件究竟有什么不同? 一、核心差异对比表 特性ON子句WHERE子句执行时机JOIN操作时JOIN完成后…...
MAC快速本地部署Deepseek (win也可以)
MAC快速本地部署Deepseek (win也可以) 下载安装ollama 地址: https://ollama.com/ Ollama 是一个开源的大型语言模型(LLM)本地运行框架,旨在简化大模型的部署和管理流程,使开发者、研究人员及爱好者能够高效地在本地环境中实验和…...
javaEE-13.spring MVC
目录 什么是spring web mvc: 什么是MVC: 一.创建一个spring项目 二.实现功能: 创建helloController.java项目: 建立连接: RequestMapping注解: 1.RequestMapping注解的使用: 2. RequestMapping 是GET还是POST请求 3.指定请求方法 RestControll…...
C/C++ | 每日一练 (2)
💢欢迎来到张胤尘的技术站 💥技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 C/C | 每日一练 (2)题目参考答案封装继承多态虚函数底…...
Nginx 常用命令和部署详解及案例示范
一、Nginx常用命令 1.1 启动 Nginx 要启动 Nginx 服务,可以使用以下命令: sudo systemctl start nginx1.2 停止 Nginx 如果需要停止 Nginx 服务,可以使用以下命令: sudo systemctl stop nginx1.3 重启 Nginx 在修改了 Nginx…...
GO大模型应用开发框架-
Eino 旨在提供基于 Golang 语言的终极大模型应用开发框架。 它从开源社区中的诸多优秀 LLM 应用开发框架,如 LangChain 和 LlamaIndex 等获取灵感,同时借鉴前沿研究成果与实际应用,提供了一个强调简洁性、可扩展性、可靠性与有效性࿰…...
保姆级!springboot访问Ollama API并调用DeepSeek模型 Api
要在springboot中访问Ollama API并调用DeepSeek模型,你需要遵循以下步骤。首先,确保你有一个有效的Ollama服务器实例运行中,并且DeepSeek模型已经被加载。 可以参考我的这篇博客 保姆级!使用Ollama本地部署DeepSeek-R1大模型 并java通过api 调用 使用Spring Boot + Sprin…...
力扣hot100 ——搜索二维矩阵 || m+n复杂度优化解法
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 解题思路: 借助行和列有序特性,不断按行或者列缩小范围;途中数字表示每…...
娱乐使用,可以生成转账、图片、聊天等对话内容
软件介绍 今天要给大家介绍一款由吾爱大佬 lifeixue 开发的趣味软件。它的玩法超丰富,能够生成各式各样的角色,支持文字聊天、发红包、转账、发语音以及分享图片等多种互动形式,不过在分享前得着重提醒,此软件仅供娱乐࿰…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
