神经网络八股(三)
1.什么是梯度消失和梯度爆炸
梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。
梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定
可以使用一些合理的损失函数如relu, leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内
2.为什么需要特征归一化
因为特征之间的单位与尺度不同,为了消除此间差异,对每个维度等同看待,防止尺度大的特征起决定性作用,所以需要进行特征归一化使不同特征在数值范围和尺度上保持一致。
优点:加快模型训练速度、提高模型性能、避免数值不稳定,增强模型的泛化能力
平均值归一化:
最大最小值归一化:
标准化:
3.什么是组合特征,如何组合高阶特征
组合特征是指多个特征组合起来,作为新的特征,组合的方法有:基本运算、聚合、聚合后进行基本运算等。
组合高阶特征可以对类别特征进行embedding嵌入、然后对特征实施FM因子分解机特征组合。
Embedding是一种将类别特征转换为低维稠密向量的技术。具体来说,它将每个类别映射到一个固定维度的向量空间中
因子分解机(FM)是一种专门用于处理稀疏数据和特征组合的机器学习模型。它特别擅长处理类别特征的交互(interaction)和组合。FM的核心思想是:
-
将每个特征(包括类别特征的embedding)表示为一个向量。
-
通过计算特征向量之间的内积(点积),捕捉特征之间的交互关系。
4.欧式距离与曼哈顿距离的区别
欧式距离是定义在欧几里得空间中,两点之间的距离,他具有明显的缺点是将样本不同属性之间的差别等同看待;曼哈顿距离也叫城市区块距离,是欧几里得空间上两点所形成的线段对轴产生的投影的距离总和
4.为什么一些场景使用余弦相似度而不是欧式相似度
余弦相似度指的是两个向量之间的角度关系,并不关心他们的绝对值大小,而欧式距离体现的是数值上的绝对差异
余弦相似度:衡量的是两个向量之间的夹角,只关注方向,而不考虑向量的长度,对向量的方向差异敏感,但对长度不敏感
欧即里得距离:衡量的是两个点在空间中的绝对距离,关注的是向量的长度和位置
5.one-hot独热编码得作用是什么
将每个类别特征的取值转换为一个唯一的二进制向量,其中只有一个位置的值为1,其余位置的值为0。能够避免类别数据的序数关系,提供稀疏的特征表示,支持多类别特征的组合,并且与大多数算法兼容。然而,在处理类别数量较多的特征时,需要考虑其维度爆炸和稀疏性问题
6.参数模型和非参数模型
在统计学中,参数模型通常假设总体(随机变量)服从某一个分布,该分布由一些参数确定(比如正态分布由均值和方差确定),在此基础上构建的模型称为参数模型,参数模型的形式和复杂度在训练之前已经确定,模型的输出依赖于一组固定数量的参数.模型形式固定,参数量有限,训练速度块,线性回归、逻辑回归、感知机:所需样本量少、拟合快、复杂度低。
非参数模型对于总体的分布不做任何假设,只是知道总体是一个随机变量,其分布是存在的(分布中也可能存在参数),但是无法知道其分布的形式,更不知道分布的相关参数,只有在给定一些样本的条件下,能够依据非参数统计的方法进行推断。非参数模型的形式和复杂度在训练过程中根据数据动态确定,模型的输出不依赖于固定数量的参数。形式灵活,参数不固定,训练慢。K近邻算法,SVM向量机,高斯过程。所需样本量多、拟合慢、容易过拟合
7.L1和L2正则先验分别服从什么分布
L1:lasso回归拉普拉斯分布
L1正则化通过惩罚参数的绝对值,使得模型参数倾向于稀疏化,即很多参数会趋近于零。这种稀疏性可以帮助进行特征选择,减少模型复杂度
L2:岭回归,高斯分布,L2正则化通过惩罚参数的平方,使得模型参数的值保持较小,但不会将参数完全置为零。这种正则化方法有助于平滑模型,避免过拟合。
8.回归问题常用得模型评估方法
均方误差:MSE预测值与实际值之差的平方的平均值。MSE的值越小,表示模型的预测结果越接近实际值,模型的性能越好。
均方根误差RMESE:均方误差(MSE)的平方根,它衡量的是模型预测值与实际值之间的标准差。RMSE的值越小,表示模型的预测结果越接近实际值,模型的性能越好
和方误差:SSE=i=1∑n(yi−y^i)2
平均绝对误差MAE:计算的是模型预测值与实际值之差的绝对值的平均值。
平均绝对百分比误差MAPE
决定系数:表示模型解释的因变量的方差比例。R2的值介于0和1之间,值越接近1,表示模型对数据的拟合越好,即模型解释的方差比例越高
相关文章:
神经网络八股(三)
1.什么是梯度消失和梯度爆炸 梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。 梯度爆炸是指梯度在方向传播过程中逐渐变大,…...
堆、优先队列、堆排序
堆: 定义: 必须是一个完全二叉树(完全二叉树:完全二叉树只允许最后一行不为满,且最后一行必须从左往右排序,最后一行元素之间不可以有间隔) 堆序性: 大根堆:每个父节点…...
vue 学习-vite api.js
/** 整机管理 * */ // 整机分类 列表 export const wholeMachineServersType params > ajaxGet({url: wholeMachine/serverstype/,params}) // 整机分类 新增 export const wholeMachineServersTypeAdd params > ajaxPost({url: wholeMachine/serverstype/,params}) /…...
java练习(35)
ps:题目来自力扣 整数反转 给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。 假设环境不允许存储 64 位整数(有符号或无符号)…...
PW_Balance
目录 1、 PW_Balance 1.1、 getDocumentsTypeID 1.2、 getShouldAmount 1.3、 setOptimalAmount 1.4、 setRemark PW_Balance package com.gx.pojo; public class PW_Balance { private Integer BalanceID; private Integer PaymentID; private Integer ReceptionID…...
【Linux-网络】HTTP的清风与HTTPS的密语
🎬 个人主页:谁在夜里看海. 📖 个人专栏:《C系列》《Linux系列》《算法系列》 ⛰️ 道阻且长,行则将至 目录 📚 引言 📚 一、HTTP 📖 1.概述 📖 2.URL ǵ…...
【前端框架】vue2和vue3的区别详细介绍
Vue 3 作为 Vue 2 的迭代版本,在性能、语法、架构设计等多个维度均有显著的变革与优化。以下详细剖析二者的区别: 响应式系统 Vue 2 实现原理:基于 Object.defineProperty() 方法实现响应式。当一个 Vue 实例创建时,Vue 会遍历…...
CMake管理依赖实战:多仓库的无缝集成
随着软件复杂度的增加,单个项目可能需要依赖多个外部库或模块。这些依赖项可能是来自不同的代码仓库,如ATest和BTest。为了实现高效的依赖管理,CMake提供了多种方式来处理这种多仓库的情况。下面我们将详细介绍几种常见的方法,并通…...
Touchgfx 编写下载算法文件(.stldr)
一)下载算法文件主要参考官方的STM32 ST-LINK Utility模板:(文件所在位置如下:) C:\Program Files (x86)\STMicroelectronics\STM32 ST-LINK Utility\ST-LINK Utility\ExternalLoader\M25P64_STM3210E-EVAL\Project\MD…...
回不去的乌托邦
回不去的乌托邦 坐在电脑面前愣神间已至深夜,依然睡意不起。 相比于带着疲惫入睡,伏案发呆更令人惬意。想起最近在自媒体上看到的一句话“最顶级的享受变成了回不去的乌托邦”。 “这是兄弟们最后一次逛校园了,我拍个照”。我的记忆力总是用在…...
如何在 SpringBoot 项目使用 Redis 的 Pipeline 功能
本文是博主在批量存储聊天中用户状态和登陆信息到 Redis 缓存中时,使用到了 Pipeline 功能,并对此做出了整理。 一、Redis Pipeline 是什么 Redis 的 Pipeline 功能可以显著提升 Redis 操作的性能,性能提升的原因在于可以批量执行命令。当我…...
Linux----线程
一、基础概念对比 特性进程 (Process)线程 (Thread)资源分配资源分配的基本单位(独立地址空间)共享进程资源调度单位操作系统调度单位CPU调度的最小单位创建开销高(需复制父进程资源)低(共享进程资源)通信…...
实现rolabelimg对于dota格式文件的直接加载和保存
在本篇博客中,我们将讲解如何修改roLabelImg.py文件,使其能够直接加载和保存Dota格式的标注文件(txt)以替换掉复杂的xml文件。通过对源代码的修改,我们将实现支持加载并保存Dota格式标注数据,以便与roLabel…...
bboss v7.3.5来袭!新增异地灾备机制和Kerberos认证机制,助力企业数据安全
ETL & 流批一体化框架 bboss v7.3.5 发布,多源输出插件增加为特定输出插件设置记录过滤功能;Elasticsearch 客户端新增异地双中心灾备机制,提升框架高可用性;Elasticsearch client 和 http 微服务框架增加对 Kerberos 认证支持…...
华为昇腾服务器固件Firmware、驱动Drive、CANN各自的作用与联系?
文章目录 **1. 固件(Firmware)****2. 驱动(Driver)****3. CANN(Compute Architecture for Neural Networks)****三者关系****典型问题定位** 华为昇腾服务器的固件、驱动和CANN是支撑其AI计算能力的核心组件…...
MySQL 视图入门
一、什么是 MySQL 视图 1.1 视图的基本概念 在 MySQL 中,视图是一种虚拟表,它本身并不存储实际的数据,而是基于一个或多个真实表(基表)的查询结果集。可以把视图想象成是一个预定义好的查询语句的快捷方式。当你查询…...
算法很美笔记(Java)——动态规划
解重叠子问题(当前解用到了以前求过的解) 形式:记忆型递归或递推(dp) 动态规划本质是递推,核心是找到状态转移的方式,也就是填excel表时的逻辑(填的方式),而…...
C++ ——继承
体现的是代码复用的思想 1、子类继承父类,子类就拥有了父类的特性(成员方法和成员属性) 2、已存在的类被称为“基类”或者“父类”或者“超类”;新创建的类被称为“派生类”或者“子类” 注意: (1&#…...
LeetCode 热题 100 283. 移动零
LeetCode 热题 100 | 283. 移动零 大家好,今天我们来解决一道经典的算法题——移动零。这道题在LeetCode上被标记为简单难度,要求我们将数组中的所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。下面我将详细讲解解题思路,…...
游戏引擎学习第116天
回顾昨天的工作 本次工作内容主要集中在游戏开发的低级编程优化,尤其是手动优化软件渲染。工作目的之一是鼓励开发者避免依赖外部库,而是深入理解代码并进行优化。当前阶段正进行SIMD(单指令多数据)优化,使用Intel推荐…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
