[深度学习][python]yolov12+bytetrack+pyqt5实现目标追踪
【算法介绍】
实时目标检测因其低延迟特性而持续受到广泛关注,具有重要的实际应用价值[4, 17, 24, 28]。其中,YOLO系列[3, 24, 28, 29, 32, 45-47, 53, 57, 58]通过有效平衡延迟与精度,在该领域占据主导地位。尽管YOLO的改进多集中在损失函数[8, 35, 43, 44, 48, 67, 68]和标签分配[22, 23, 34, 59, 69]等方面,网络架构设计仍是核心研究方向[24, 28, 32, 57, 58]。尽管以注意力为核心的视觉变换器(ViT)架构已展现出强大的建模能力,特别是在小模型中[20, 21, 25, 50],但大多数架构设计仍聚焦于CNN,这主要受限于注意力机制的效率问题。具体而言,注意力机制面临二次计算复杂度和低效内存访问操作两大挑战(后者正是FlashAttention[13, 14]致力于解决的问题)。因此,在相似计算预算下,基于CNN的架构性能比基于注意力的架构高约3倍[38],这严重阻碍了注意力机制在追求高推理速度的YOLO系统中的应用。
本文旨在应对这些挑战,并构建以注意力为核心的YOLO框架——YOLOv12。我们提出了以下三项关键改进:
- 区域注意力模块(A²):通过简单地将特征图划分为垂直和水平区域,在保持大感受野的同时降低了注意力计算复杂度,从而提升了速度。
- 残差高效层聚合网络(R-ELAN):解决了注意力机制引入的优化难题,特别针对大规模模型。R-ELAN在原始ELAN[57]的基础上进行了两项改进:(i) 引入了采用缩放技术的块级残差设计;(ii) 重新设计了特征聚合方法。
- 架构改进:针对YOLO系统对传统注意力架构进行了调整,包括:(a) 引入FlashAttention以解决注意力内存访问问题;(b) 移除位置编码等设计以提升速度和简洁性;(c) 将MLP比例从4调整为1.2,以平衡注意力与前馈网络的计算量;(d) 减少堆叠块深度以优化训练;(e) 尽可能利用卷积操作的计算效率。
基于上述设计,我们开发了一个包含五种规模(N/S/M/L/X)的新型实时检测器家族。遵循YOLOv11[28]的实验设置(未使用额外技巧),在标准目标检测基准上的大量实验表明,YOLOv12在延迟-精度和FLOPs-精度权衡上显著优于先前模型(如图1所示)。例如:
- YOLOv12-N以40.6% mAP超越了YOLOv10-N[53](提升2.1% mAP)且速度更快,同时以相当速度超越了YOLOv11-N[28](提升1.2% mAP)。
- 相比RT-DETR-R18[66]和RT-DETRv2-R18[40],YOLOv12-S在mAP上分别提升1.5%和0.1%,延迟加快42%,计算量仅需其36%,参数量仅需其45%。
综上,YOLOv12的贡献在于:
- 通过方法论创新和架构改进,成功构建了以注意力为核心的简洁高效的YOLO框架,打破了CNN模型在YOLO系列中的主导地位。
- 在不依赖预训练等额外技术的情况下,YOLOv12以快速的推理速度和更高的检测精度实现了SOTA结果,充分展现了其巨大潜力。
【效果展示】
【测试环境】
anaconda3+python3.10
torch==2.5.1
numpy==1.26.4
cython_bbox-0.1.3-cp310-cp310-win_amd64.whl
注意一定要用源码提供cython_bbox进行安装否则会和numpy不兼容。
【视频演示】
[深度学习][python]yolov12+bytetrack+pyqt5实现目标追踪_哔哩哔哩_bilibili
【调用代码】
from Yolov12Detector import *
from ByteTackManager import *
from tracking_utils.timer import Timer
save_file = None # not None will save videocap = cv2.VideoCapture('car.mp4')
out = Noneframe_fps = int(cap.get(cv2.CAP_PROP_FPS))
# 获取视频帧宽度和高度
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print("video fps={},width={},height={}".format(frame_fps, frame_width, frame_height))
if save_file:fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(save_file, fourcc, frame_fps, (frame_width, frame_height))
detector = Yolov12Detector()
tracker = BYTETracker()
frame_id = 0
timer = Timer()
while True:ret, frame = cap.read()frame_id += 1if not ret:print('read over!')breaktimer.tic()result_list = detector.inference_image(frame)if len(result_list)>0:online_targets = tracker.update(result_list)#print(online_targets)online_tlwhs = []online_ids = []online_scores = []for t in online_targets:tlwh = t.tlwhtid = t.track_idvertical = tlwh[2] / tlwh[3] > 1.6if tlwh[2] * tlwh[3] > 10 and not vertical:online_tlwhs.append(tlwh)online_ids.append(tid)online_scores.append(t.score)timer.toc()#print(online_tlwhs)online_im = plot_tracking(frame, online_tlwhs, online_ids, frame_id=frame_id + 1,fps=1. / timer.average_time)if save_file:out.write(online_im)cv2.imshow('frame', online_im)if cv2.waitKey(1) & 0xFF == ord('q'):breakif save_file:out.release()
cap.release()
cv2.destroyAllWindows()
【参考文献】
1. blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/145725555
相关文章:

[深度学习][python]yolov12+bytetrack+pyqt5实现目标追踪
【算法介绍】 实时目标检测因其低延迟特性而持续受到广泛关注,具有重要的实际应用价值[4, 17, 24, 28]。其中,YOLO系列[3, 24, 28, 29, 32, 45-47, 53, 57, 58]通过有效平衡延迟与精度,在该领域占据主导地位。尽管YOLO的改进多集中在损失函数…...
【深度学习】矩阵的理解与应用
一、矩阵基础知识 1. 什么是矩阵? 矩阵是一个数学概念,通常表示为一个二维数组,它由行和列组成,用于存储数值数据。矩阵是线性代数的基本工具之一,广泛应用于数学、物理学、工程学、计算机科学、机器学习和数据分析等…...

我是如何从 0 到 1 找到 Web3 工作的?
作者:Lotus的人生实验 关于我花了一个月的时间,从 0 到 1 学习 Web3 相关的知识和编程知识。然后找到了一个 Web3 创业公司实习的远程工作。 👇👇👇 我的背景: 计算机科班,学历还可以(大厂门槛水平) 毕业工…...
《Keras 3 :使用 Vision Transformers 进行物体检测》:此文为AI自动翻译
《Keras 3 :使用 Vision Transformers 进行物体检测》 作者:Karan V. Dave 创建日期:2022 年 3 月 27 日最后修改时间:2023 年 11 月 20 日描述:使用 Vision Transformer 进行对象检测的简单 Keras 实现。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 介绍 A…...
java(spring boot)实现向deepseek/GPT等模型的api发送请求/多轮对话(附源码)
我们再启动应用并获取api密钥后就可以对它发送请求了,但是官方文档对于如何进行多轮对话以及怎么自定义参数并没有说的很清楚,给的模板也没有java的,因此我们需要自己实现。 import org.json.JSONArray; import org.json.JSONObject;import j…...
module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法
module ‘cv2.dnn‘ has no attribute ‘DictValue‘解决办法 pip install opencv-python4.7.0.72 -i https://pypi.tuna.tsinghua.edu.cn/simple 测试: python -c"import cv2"...
将RocketMQ集成到了Spring Boot项目中,实现站内信功能
1. 添加依赖 首先,在pom.xml中添加RocketMQ的依赖: <dependencies><!-- Spring Boot Starter Web --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifac…...
Deepseek 怼CHATGPT实况
提示词: 用犀利的语言批评ChatGPT 深度思考(R1) 嗯,用户让我用犀利的语言批评ChatGPT。首先,我需要理解他们的动机。可能他们遇到了ChatGPT的某些问题,比如回答不准确或者缺乏深度,所以想表达不满。也有…...
基础篇11-图像分割(上)--阈值的方法
图像分割是图像处理的重要内容,是位于底层的图像处理、特征提取与上一层次的图像分析之间的关键步骤。图像分割的相关技术较多,分为三篇介绍。本节是上篇,介绍基于阈值的技术。 1 引言 图像分割是计算机视觉和图像处理中的核心任务之一&…...
[特殊字符] LeetCode 62. 不同路径 | 动态规划+递归优化详解
在解 LeetCode 的过程中,路径计数问题是动态规划中一个经典的例子。今天我来分享一道非常基础但极具代表性的题目——不同路径。不仅适合初学者入门 DP(动态规划),还能帮助你打下递归思维的基础。 本文将介绍: &…...
常用的 JVM 参数:配置与优化指南
文章目录 常用的 JVM 参数:配置与优化指南引言 1. 内存管理参数1.1 堆内存配置1.2 方法区(元空间)配置1.3 直接内存配置 2. 垃圾回收参数2.1 垃圾回收器选择2.2 GC 日志配置2.3 GC 调优参数 3. 性能监控参数3.1 堆内存转储3.2 JVM 监控3.3 远…...

【JavaWeb学习Day17】
Tlias智能学习系统(员工管理) 新增员工: 三层架构职责: Controller:1.接收请求参数(员工信息);2.调用service方法;3.响应结果。 具体实现: /***新增员工…...

DeepSeek 提示词:定义、作用、分类与设计原则
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
前端大文件上传
1. 开场概述 “大文件上传是前端开发中常见的需求,但由于文件体积较大,直接上传可能会遇到网络不稳定、服务器限制等问题。因此,通常需要采用分片上传、断点续传、并发控制等技术来优化上传体验” 2. 核心实现方案 “我通常会采用以下方案…...

JDK源码系列(一)Object
Object 概述 Object类是所有类的基类——java.lang.Object。 Object类是所有类的基类,当一个类没有直接继承某个类时,默认继承Object类Object类属于java.lang包下,此包下的所有类在使用时无需手动导入,系统会在程序编译期间自动…...

【Python 打造高效文件分类工具】
【Python】 打造高效文件分类工具 一、代码整体结构二、关键代码解析(一)初始化部分(二)界面创建部分(三)核心功能部分(四)其他辅助功能部分 三、运行与使用四、示图五、作者有话说 …...

大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1)
Paimon的下载及安装,并且了解了主键表的引擎以及changelog-producer的含义参考: 大数据组件(四)快速入门实时数据湖存储系统Apache Paimon(1) 利用Paimon表做lookup join,集成mysql cdc等参考: 大数据组件(四)快速入门实时数据…...

边缘安全加速(Edge Security Acceleration)
边缘安全加速(Edge Security Acceleration,简称ESA)是一种通过将安全功能与网络边缘紧密结合来提升安全性和加速网络流量的技术。ESA的目标是将安全措施部署到接近用户或设备的地方,通常是在网络的边缘,而不是将所有流…...
C/C++高性能Web开发框架全解析:2025技术选型指南
一、工业级框架深度解析(附性能实测) 1. Drogon v2.1:异步框架性能王者 核心架构: Reactor 非阻塞I/O线程池(参考Nginx模型) 协程实现:基于Boost.Coroutine2(兼容C11)…...
fedora 安装 ffmpeg 过程记录
参考博客:1. linux(centos)安装 ffmpeg,并添加 libx264库:https://blog.csdn.net/u013015301/article/details/140778199ffmpeg 执行时如添加参数 -vcodec libx264,会出现错误:Unknown encoder libx264’的错误,缺少li…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...