如何使用3D高斯分布进行环境建模
使用3D高斯分布来实现建模,主要是通过高斯分布的概率特性来描述空间中每个点的几何位置和不确定性。具体来说,3D高斯分布被用来表示点云数据中的每一个点或体素(voxel)的空间分布和不确定性,而不是单纯地存储每个点的坐标。以下是如何使用3D高斯分布来进行建模的几个关键步骤:
1. 3D高斯分布的基本概念:
- 高斯分布(也称为正态分布)通过均值(μ)和协方差矩阵(Σ)来描述数据的分布情况。
- 在三维空间中,3D高斯分布的均值表示点的期望位置,而协方差矩阵则表示该点的空间分布范围(即不确定性),它定义了数据点周围的“扩展区域”。
- 形式上,3D高斯分布可以表示为:

2. 如何在SLAM中使用3D高斯分布:
- 在SLAM中,通常通过RGB-D相机获取环境的深度信息,得到的是一个点云集合。与传统的点云表示不同,3D高斯分布通过描述每个点的空间位置及其不确定性来替代单纯的点云表示。
a. 投射(Splat):
- 首先,将RGB-D图像的深度信息转化为3D空间中的点。每个点并不单独存储,而是被表示为一个3D高斯分布。这些高斯分布的均值是点的位置,而协方差则表示该点位置的可能误差或不确定性。
- 通过对每个3D点施加一个高斯分布,数据就变成了一个“软”表示,而不是一个硬性的离散点。
b. 跟踪(Track):
- 在后续的帧中,跟踪相机的位置和姿态,并根据相机的运动来更新每个3D高斯分布的位置和不确定性。
- 由于相机和环境的运动,原来投射的高斯分布需要通过连续的帧进行匹配和优化。在这个过程中,跟踪的目标是将新的帧中的高斯分布与先前的高斯分布进行配准,更新其位置和协方差。
c. 建图(Map):
- 通过对多个帧的跟踪结果进行融合,可以生成整个环境的三维地图。每个位置的空间不再仅仅是一个点,而是一个包含位置信息和不确定性的高斯分布。
- 在建图过程中,通过非线性优化(例如使用图优化方法)来优化每个点的3D高斯分布,融合来自不同视角的观测数据,使得最终的地图既稠密又准确。
3. 如何通过协方差矩阵描述不确定性:
- 协方差矩阵是3D高斯分布中的关键,它描述了空间点的不确定性。在实际应用中,不同的相机视角和传感器噪声会影响协方差的大小和形状。
- 例如,如果某个点位于视野边缘或者深度传感器的不确定性较高,那么这个点的协方差矩阵会比位于中央位置的点的协方差矩阵大,表示其不确定性更高。
4. 高斯分布与点云的比较:
- 传统点云表示:每个点是一个离散的坐标,没有直接表示不确定性或误差的能力,且计算成本较高,尤其是在点云密集的情况下。
- 3D高斯分布表示:每个点用一个高斯分布来表示,不仅包含了空间位置信息,还能够通过协方差矩阵表达不确定性。这使得在SLAM系统中,能够更高效地融合不同视角的数据,处理遮挡、噪声等问题。
5. 优化与地图更新:
- 通过对多个观测数据进行优化,可以减少不确定性。优化的目标是最小化每个3D高斯分布之间的误差,使得相机轨迹和地图中的点位置更加精确。
- 在图优化框架中,高斯分布的协方差可以作为优化的目标之一,确保地图在多视角下能够一致且无误差。
总结:
使用3D高斯分布来进行建模,关键在于通过引入不确定性描述来提高建图的鲁棒性和精度。与传统点云表示相比,3D高斯分布提供了一种更为灵活和有效的方式来处理空间数据,能够通过协方差矩阵表示点的空间不确定性,帮助优化SLAM过程中的定位和地图更新。
相关文章:
如何使用3D高斯分布进行环境建模
使用3D高斯分布来实现建模,主要是通过高斯分布的概率特性来描述空间中每个点的几何位置和不确定性。具体来说,3D高斯分布被用来表示点云数据中的每一个点或体素(voxel)的空间分布和不确定性,而不是单纯地存储每个点的坐…...
三级分类bug解决
文章目录 前端后端 前端 <!DOCTYPE html> <html xmlns:th"http://www.thymeleaf.org" lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&q…...
AxiosError: Network Error
不知怎么的,项目还在开发阶段,之前还好好的,玩儿了两天再一打开发现页面无法显示数据了,报错如下: 我以为是后端出问题了,但是后端控制台无报错,又用postman测试了一下,可以获取到数…...
CDefFolderMenu_MergeMenu函数分析之添加了分割线和属性菜单项两项
CDefFolderMenu_MergeMenu函数分析之添加了分割线和属性菜单项两项 第一部分: void CDefFolderMenu_MergeMenu(HINSTANCE hinst, UINT idMainMerge, UINT idPopupMerge, QCMINFO *pqcm) { UINT idMax pqcm->idCmdFirst; if (idMainMerge) { HME…...
mysql的源码包安装
安装方式一:(编译好的直接安装) 1.添加一块10G的硬盘,给root逻辑卷扩容 (下面安装方式二有,一模一样的装就行,我就不写了,再写的话篇幅就太长了) 2.下载编译好的源码包…...
win11系统无法打开软件_组策略无法打开_gpedit.msc不生效_为了对电脑进行保护,已经阻止此应用---Windows工作笔记057
碰到这个问题挺麻烦的,要用的软件打不开了. 其实解决方法就是去组策略中修改一个策略就可以了,但是: 先来说: 而且,使用cmd输入的gpedit.msc也打不开了. 这个怎么解决? @echo off pushd "%~dp0"dir /b C:\Windows\servicing\Packages\Microsoft-Windows-GroupPo…...
【JAVA】io流之缓冲流
①BufferedInputStream、BufferedOutputStream(适合读写非普通文本文件) ②BufferedReader、BufferedWriter(适合读写普通文本文件。) 缓冲流的读写速度快,原理是:在内存中准备了一个缓存。读的时候从缓存中…...
from flask_session import Session 为什么是Session(app)这么用?
在 Flask 中,from flask_session import Session 和 Session(app) 的用法是为了配置和使用 Flask-Session 扩展,将用户的会话(Session)数据存储到服务器端(如 Redis、数据库或文件系统),而不是默…...
AI赋能的未来城市:如何用智能化提升生活质量?
这会是我们憧憬的未来城市吗? 随着技术的不断进步和城市化进程的加速,现代城市面临着诸多挑战——交通拥堵、环境污染、能源消耗、人口老龄化等问题愈发突出。为了应对这些挑战,建设智慧城市已成为全球发展的重要趋势。在这一进程中…...
【Go】Go wire 依赖注入
1. wire 简介 wire 是一个 Golang 的依赖注入框架(类比 Spring 框架提供的依赖注入功能) ⭐ 官方文档:https://github.com/google/wire 这里关乎到编程世界当中一条好用的设计原则:A用到了B,那么B一定是通过依赖注入的…...
深度集成DeepSeek与Java开发:智能编码新纪元全攻略 [特殊字符]
一、DeepSeek:Java开发者的第二大脑 🧠 1.1 传统开发痛点VS智能开发体验 传统开发DeepSeek智能辅助效率提升对比手动编写重复代码一键生成模板代码代码量减少70%↑调试全靠断点日志智能定位缺陷根源问题排查时间缩短60%↓文档维护耗时费力自动生成更新…...
WEB前端将指定DOM生成图片并下载最佳实践(html2canvas)
前言: html2canvas 是一个 JavaScript 库,其主要作用是将 HTML 元素或其部分内容渲染为 Canvas 图像。通过它,开发者可以将网页中的任意 DOM 元素(包括文本、图片、样式等)转换为图片格式(如 PNG 或 JPEG&…...
掌握.NET Core后端发布流程,如何部署后端应用?
无论你是刚接触.NET Core的新手还是已有经验的开发者,在这篇文章中你将会学习到一系列实用的发布技巧与最佳实践,帮助你高效顺利地将.NET Core后端应用部署到生产环境中 目录 程序发布操作 Docker容器注册表 文件夹发布 导入配置文件 网站运行操作 …...
深度学习学习笔记(34周)
目录 摘要 Abstracts 简介 Hourglass Module(Hourglass 模块) 网络结构 Intermediate Supervision(中间监督) 训练过程细节 评测结果 摘要 本周阅读了《Stacked Hourglass Networks for Human Pose Estimation》…...
C++ 设计模式-备忘录模式
游戏存档实现,包括撤销/重做、持久化存储、版本控制和内存管理 #include <iostream> #include <memory> #include <deque> #include <stack> #include <chrono> #include <fstream> #include <sstream> #include <ct…...
TOGAF之架构标准规范-信息系统架构 | 应用架构
TOGAF是工业级的企业架构标准规范,信息系统架构阶段是由数据架构阶段以及应用架构阶段构成,本文主要描述信息系统架构阶段中的应用架构阶段。 如上所示,信息系统架构(Information Systems Architectures)在TOGAF标准规…...
第一届网谷杯
统计四场的所有题目(共计12题,四场比赛一共上了21题【包括换题】) 随便记记,以免老题复用(已经复用了) Web 文件包含 1 伪协议 http://120.202.175.143:8011/?cphp://filter/convert.base64-encode/reso…...
Linux(ubuntu) GPU CUDA 构建Docker镜像
一、创建Dockerfile FROM ubuntu:20.04#非交互式,以快速运行自动化任务或脚本,无需图形界面 ENV DEBIAN_FRONTENDnoninteractive# 安装基础工具 RUN apt-get update && apt-get install -y \curl \wget \git \build-essential \software-proper…...
mysql -DQL语句和DCL语句
DQL 数据查询语言(Data Query Language,DQL)是数据库操作语言的重要组成部分,主要用于从数据库中检索数据,核心关键字为SELECT。以下从语法结构、常见操作及示例等方面详细介绍: 语法结构 DQL 的标准语法…...
掌握 ElasticSearch 组合查询:Bool Query 详解与实践
掌握 ElasticSearch 组合查询:Bool Query 详解与实践 一、引言 (Introduction)二、Bool 查询基础2.1 什么是 Bool 查询?2.2 Bool 查询的四种子句2.3 语法结构 三、Bool 查询的四种子句详解与示例3.1 must 子句3.2 filter 子句3.3 should 子句3.4 must_no…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
