当前位置: 首页 > news >正文

MySQL面试学习

MySQL

1.事务

事务的4大特性

事务4大特性:原子性、一致性、隔离性、持久性

  1. 原⼦性: 事务是最⼩的执⾏单位,不允许分割。事务的原⼦性确保动作要么全部完成,要么全不执行
  2. 一致性: 执⾏事务前后,数据保持⼀致,多个事务对同⼀个数据读取的结果是相同的;
  3. 隔离性: 并发访问数据库时,⼀个⽤户的事务不被其他事务所⼲扰,各并发事务之间数据库是独⽴的;
  4. 持久性: ⼀个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发⽣故障也不应该对其有任何影响。

实现保证:MySQL的存储引擎InnoDB使用重做日志保证一致性与持久性,回滚日志保证原子性,使用各种锁来保证隔离性。

2.事务隔离级别

  1. 读未提交:最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
  2. 读已提交:允许读取并发事务已经提交的数据,可以阻⽌脏读,但是幻读或不可重复读仍有可能发⽣。
  3. 可重复读:同⼀字段的多次读取结果都是⼀致的,除⾮数据是被本身事务⾃⼰所修改,可以阻⽌脏读和不可重复读,会有幻读。
  4. 串行化:最⾼的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执⾏,这样事务之间就完全不可能产⽣⼲扰。
隔离级别并发问题问题
读未提交可能会导致脏读、幻读或不可重复读
读已提交可能会导致幻读或不可重复读
可重复读可能会导致幻读
可串行化不会产生干扰

3.默认隔离级别-RR

MySQL默认隔离级别:可重复读;

同⼀字段的多次读取结果都是⼀致的,除⾮数据是被本身事务⾃⼰所修改;

可能出现幻读,解决方案:

  1. 把隔离级别设置成SERIALIZABLE;这样所有事务都只能顺序执行,自然不会因为并发有什么影响了,但是性能会下降许多
  2. 使用MVCC解决快照读幻读问题(如简单select),读取的不是最新的数据。维护一个字段作为version,这样可以控制到每次只能有一个人更新一个版本。
  3. 如果需要读最新的数据,可以通过GapLock+Next-KeyLock可以解决当前读幻读问题。

4.行锁,表锁,意向锁

InnoDB⽀持⾏级锁(row-level locking)和表级锁,默认为⾏级锁

InnoDB按照不同的分类的锁:

1. 共享/排它锁(Shared and Exclusive Locks):行级别锁
2. 意向锁(Intention Locks),表级别锁
3. 间隙锁(Gap Locks),锁定一个区间
4. 记录锁(Record Locks),锁定一个行记录

表级锁(串行化):Mysql中锁定 粒度最大的一种锁,对当前操作的整张表加锁,实现简单 ,资源消耗也比较少,加锁快,不会出现死锁 。其锁定粒度最大,触发锁冲突的概率最高,并发度最低,MyISAM和 InnoDB引擎都支持表级锁。

行级锁(RR、RC):Mysql中锁定 粒度最小 的一种锁,只针对当前操作的行进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。 InnoDB支持的行级锁,包括如下几种:

  • 记录锁(Record Lock): 对索引项加锁,锁定符合条件的行。其他事务不能修改和删除加锁项;
  • 间隙锁(Gap Lock): 对索引项之间的“间隙”加锁,锁定记录的范围,不包含索引项本身,其他事务不能在锁范围内插入数据。
  • Next-key Lock: 锁定索引项本身和索引范围。即Record Lock和Gap Lock的结合。可解决幻读问题。

5.索引

Innodb和Myisam引擎

Myisam:支持表锁,适合读密集的场景,不支持外键,不支持事务,索引与数据在不同的文件

Innodb:支持行、表锁,默认为行锁,适合并发场景,支持外键,支持事务,索引与数据同一文件

哈希索引

哈希索引用索引列的值计算该值的hashCode,然后在hashCode相应的位置存执该值所在行数据的物理位置,因为使用散列算法,因此访问速度非常快,但是一个值只能对应一个hashCode,而且是散列的分布方式,因此哈希索引不支持范围查找和排序的功能。

B+树索引

优点:

  1. B+树的磁盘读写代价低,更少的查询次数,查询效率更加稳定,有利于对数据库的扫描
  2. B+树是B树的升级版,B+树只有叶节点存放数据,其余节点用来索引。索引节点可以全部加入内存,增加查询效率,叶子节点可以做双向链表,从而提高范围查找的效率,增加的索引的范围。
  3. 在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况。所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,B树与B+树可以有多个子女,从几十到上千,可以降低树的高度。
  4. 磁盘预读原理:将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

6. 聚簇索引和非聚簇索引

聚簇索引:将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据(主键索引)

非聚簇索引:将数据与索引分开存储,索引结构的叶子节点指向了数据对应的位置(辅助索引)

聚簇索引的叶子节点就是数据节点,而非聚簇索引的叶子节点仍然是索引节点,只不过有指向对应数据块的指针。

7.数据库范式

第一范式(1NF)列不可分割

第二范式(2NF)属性完全依赖于主键 [ 消除部分子函数依赖 ]

第三范式(3NF)属性不依赖于其它非主属性 [ 消除传递依赖 ]

8.JOIN 查询

left join(左联接) 返回包括左表中的所有记录和右表中关联字段相等的记录
right join(右联接) 返回包括右表中的所有记录和左表中关联字段相等的记录
inner join(等值连接) 只返回两个表中关联字段相等的行

优化

Explain

索引优化

  1. 最左前缀索引:like只用于’string%',语句中的=和in会动态调整顺序
  2. 唯一索引:唯一键区分度在0.1以上
  3. 无法使用索引:!= 、is null 、 or、>< 、(5.7以后根据数量自动判定)in 、not in
  4. 联合索引:避免select * ,查询列使用覆盖索引

语句优化:

  1. har固定长度查询效率高,varchar第一个字节记录数据长度
  2. 应该针对Explain中Rows增加索引
  3. group/order by字段均会涉及索引
  4. Limit中分页查询会随着start值增大而变缓慢,通过子查询+表连接解决
  5. count会进行全表扫描,如果估算可以使用explain
  6. delete删除表时会增加大量undo和redo日志, 确定删除可使用trancate

表结构优化

  1. 单库不超过200张表
  2. 单表不超过500w数据
  3. 单表不超过40列
  4. 单表索引不超过5个

集群

1.主从复制过程

MySQl主从复制:

  • 原理:将主服务器的binlog日志复制到从服务器上执行一遍,达到主从数据的一致状态。
  • 过程:从库开启一个I/O线程,向主库请求Binlog日志。主节点开启一个binlog dump线程,检查自己的二进制日志,并发送给从节点;从库将接收到的数据保存到中继日志(Relay log)中,另外开启一个SQL线程,把Relay中的操作在自身机器上执行一遍
  • 优点:
    • 作为备用数据库,并且不影响业务
    • 可做读写分离,一个写库,一个或多个读库,在不同的服务器上,充分发挥服务器和数据库的性能,但要保证数据的一致性

2.数据一致性问题

“主从复制有延时”,这个延时期间读取从库,可能读到不一致的数据。

**缓存记录写key法:**在cache里记录哪些记录发生过的写请求,来路由读主库还是读从库

**异步复制:**在异步复制中,主库执行完操作后,写入binlog日志后,就返回客户端,这一动作就结束了,并不会验证从库有没有收到,完不完整,所以这样可能会造成数据的不一致。

**半同步复制:**当主库每提交一个事务后,不会立即返回,而是等待其中一个从库接收到Binlog并成功写入Relay-log中才返回客户端,通过一份在主库的Binlog,另一份在其中一个从库的Relay-log,可以保证了数据的安全性和一致性。

**全同步复制:**指当主库执行完一个事务,所有的从库都执行了该事务才返回给客户端。因为需要等待所有从库执行完该事务才能返回,所以全同步复制的性能必然会收到严重的影响。

相关文章:

MySQL面试学习

MySQL 1.事务 事务的4大特性 事务4大特性&#xff1a;原子性、一致性、隔离性、持久性 原⼦性&#xff1a; 事务是最⼩的执⾏单位&#xff0c;不允许分割。事务的原⼦性确保动作要么全部完成&#xff0c;要么全不执行一致性&#xff1a; 执⾏事务前后&#xff0c;数据保持⼀…...

一文读懂Docker之Docker Compose

目录 一、Docker Compose简介 二、Docker Compose的安装和基本使用 1、Docker Compose的安装 步骤一、下载docker-compose 步骤二、新增可执行权限 步骤三、查看是否安装成功 2、Docker Compose的基本使用 (1)、docker-compose up (2)、docker-compose ps (3)、docke…...

escape SQL中用法

select * from tablename where username like %#%% escape # 这个的意思就是&#xff0c;escape指定字符#&#xff0c;#字符后面的第一个字符被认为是普通字符 查询示例2 查询username字段中包含[的数据也是一样&#xff0c;即&#xff1a; select * from tablename where us…...

Cherno C++ P57 Standard array处理静态数组

这篇文章当中我们讲一下如何使用C自带的standard array来处理静态数组。 首先什么是静态数组&#xff0c;静态数组通常指的是不会增长的数据&#xff0c;长度是已经确定了的。我们在定义数组的时候就必须确定好长度与类型。 其次C当中也确实给我们提供了一些可以用来处理静态…...

linux学习【7】Sourc Insight 4.0设置+操作

目录 1.Source Insight是什么&#xff1f;2.需要哪些配置&#xff1f;3.怎么新建项目4.一些问题的解决1.中文乱码问题 5.常规使用1. 在工程中打开文件2. 在文件中查看函数或变量的定义3. 查找函数或变量的引用4. 快捷键 按照这个设置就可以了&#xff0c;下面的设置会标明设置理…...

JDK、Hadoop下载地址

一、Oracle JDK https://www.oracle.com/java/technologies/downloads/ 刚进去是最新的版本&#xff0c;往下滑可以看到老版本 二、Open JDK的 Azul Zulu https://www.azul.com/downloads/ 直接可以选版本等选项卡 三、Hadoop Apache Download Mirrors...

【小白向超详细】使用 VSCode 远程连接 Linux 服务器详细教程

使用 VSCode 远程连接 Linux 服务器详细教程 前提条件 已安装 VSCode。已在 VSCode 中安装 Remote - SSH 插件。目标 Linux 服务器 开启了 SSH 服务&#xff0c;并可以通过 SSH 访问。本地电脑已安装 SSH 客户端&#xff08;Linux 和 macOS 自带&#xff0c;Windows 用户可以…...

设计心得——解耦的实现技术

一、说明 在前面的“设计心得——解耦”中&#xff0c;对解耦进行了高层次的抽象说明。本篇则对在实践中常用的解耦技术进行逐一分析说明&#xff0c;以期为开发者能更从理论到实践搭建一个桥梁。至于大家能够如何更好的在自己的项目中进行解耦的实践&#xff0c;就需要不断的…...

计算机毕业设计SpringBoot+Vue.jst在线文档管理系统(源码+LW文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

在windows下安装windows+Ubuntu16.04双系统(下)

这篇文章的内容主要来源于这篇文章&#xff0c;为正式安装windowsUbuntu16.04双系统部分。在正式安装前&#xff0c;若还没有进行前期准备工作&#xff08;1.分区2.制作启动u盘&#xff09;&#xff0c;见《在windows下安装windowsUbuntu16.04双系统(上)》 二、正式安装Ubuntu …...

一文讲解Redis为什么读写性能高以及I/O复用相关知识点

Redis为什么读写性能高呢&#xff1f; Redis 的速度⾮常快&#xff0c;单机的 Redis 就可以⽀撑每秒十几万的并发&#xff0c;性能是 MySQL 的⼏⼗倍。原因主要有⼏点&#xff1a; ①、基于内存的数据存储&#xff0c;Redis 将数据存储在内存当中&#xff0c;使得数据的读写操…...

TPU(Tensor Processing Unit)详解

一、什么是TPU&#xff1f; TPU&#xff08;Tensor Processing Unit&#xff0c;张量处理器&#xff09;是谷歌专门为机器学习任务设计的定制化ASIC芯片&#xff0c;旨在加速神经网络训练与推理。其核心目标是针对矩阵运算&#xff08;如矩阵乘加&#xff09;优化硬件架构&…...

Ubuntu20.04.2安装Vmware tools

软件版本&#xff1a;Vmware Workstation Pro 17.6.2 操作系统镜像文件&#xff1a;ubuntu-20.04.2-desktop-amd64 方式1&#xff1a;用iso镜像安装 没用这种方法&#xff0c;太麻烦 方式2&#xff1a;用apt安装Open VM Tools 如果你使用的是较新的Ubuntu版本&#xff08;如…...

检测服务端口是否开放的常用方法

检测服务端口是否开放的常用方法 文章目录 检测服务端口是否开放的常用方法背景使用nc命令使用 telnet 命令使用 curl 命令使用 openssl 命令使用 Python 脚本,socket连接使用 bash 内建命令:使用 nmap:总结 背景 有时候需要测试网络是否连通&#xff0c;端口是否开放&#xf…...

muduo源码阅读:socket常见操作及一些补充

TCP连接和释放 一个典型的TCP连接、通信过程&#xff1a; &#xff08;假设有资源的一端是服务器端&#xff09; 服务器会启用一个监听循环&#xff0c;不断接受client连接请求(三次握手建立连接), 进行数据通信&#xff0c;通信完成以后断开连接(四次挥手断开连接)。 对于…...

虚拟表格实现全解析

在数据展示越来越复杂的今天&#xff0c;大量数据的渲染就像是“满汉全席”——如果把所有菜肴一次性摆上桌&#xff0c;既浪费资源也让人眼花缭乱。幸运的是&#xff0c;我们有两种选择&#xff1a; 自己动手&#xff1a;通过二次封装 Element Plus 的表格组件&#xff0c;实…...

使用 Grafana 监控 Spring Boot 应用

随着软件开发领域的不断发展&#xff0c;监控和可观测性已成为确保系统可靠性和性能的关键实践。Grafana 是一个功能强大的开源工具&#xff0c;能够为来自各种来源的监控数据提供丰富的可视化功能。在本篇博客中&#xff0c;我们将探讨如何将 Grafana 与 Spring Boot 应用程序…...

使用Socket编写超牛的http服务器和客户端(一)

实现一个高性能的基于 IOCP(I/O Completion Ports)的 HTTP 服务器,支持多线程、动态线程池调整和路由处理。 主要功能和特性 IOCP 模型: 使用多个 IOCP 句柄(IOCP_COUNT),将客户端连接均匀分配到不同的 IOCP 上,减少线程竞争。 工作线程使用 GetQueuedCompletionStatu…...

python turtle模块有哪几种命令

python turtle模块命令的分类&#xff1a; 1、运动命令 2、笔画控制命令 3、其他命令...

【Transformer架构】

目录 一、Transformer介绍 1.1 Transformer的诞生 1.2 什么是Transformer 1.3 Transformer的优势 1.4 Transformer的市场 二、Transformer架构 2.1 Transformer模型的作用 2.2 Transformer总体架构图 2.2.1 Transformer总体架构 2.2.2 输入部分 2.2.3 输出部分 2.2.…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...