Python 进阶特性深度解析:从语法糖到内存管理的统一视角
生成式(推导式)的用法与内存效率分析
Python 的推导式不仅仅是语法糖,它们在内存管理和性能方面有着深刻的影响。理解推导式的工作原理,有助于我们写出更高效的代码。
推导式的内存模型分析
列表推导式在 CPython 解释器中的实现实际上比等价的 for 循环更为高效:
# 列表推导式的内存分配模式
squares_list = [x**2 for x in range(1000)]# 等价 for 循环的内存分配模式
squares_loop = []
for x in range(1000):squares_loop.append(x**2)
列表推导式的关键优势在于:
- Python 解释器预先分配了适当大小的内存块,减少了动态扩容操作
- 避免了重复调用
append()
方法的开销 - 局部命名空间优化(Python 3.x 中,推导式有自己的作用域)
通过 dis 模块查看字节码可以看到这种差异:
import dis# 分析列表推导式的字节码
def list_comp():return [x**2 for x in range(10)]# 分析等价循环的字节码
def for_loop():result = []for x in range(10):result.append(x**2)return resultprint("列表推导式字节码:")
dis.dis(list_comp)
print("\n循环实现字节码:")
dis.dis(for_loop)
生成器表达式与延迟计算模型
生成器表达式体现了 Python 的"懒惰计算"(lazy evaluation)范式:
# 生成器表达式与内存占用分析
import sys# 立即计算的列表推导式
list_comp = [x for x in range(10**6)]
print(f"列表占用内存: {sys.getsizeof(list_comp) / (1024 * 1024):.2f} MB")# 延迟计算的生成器表达式
gen_exp = (x for x in range(10**6))
print(f"生成器占用内存: {sys.getsizeof(gen_exp) / 1024:.2f} KB")
生成器表达式通过延迟计算模型与 Python 的垃圾回收机制协同工作,为处理大数据流提供了内存效率解决方案。这种设计与函数式编程中的惰性求值概念相似。
对象复制的内存模型与引用语义
Python 的对象复制机制直接影响着内存管理和程序行为。深入理解这一机制需要从 Python 的对象模型角度分析。
从引用语义看对象复制
Python 采用引用语义(reference semantics)而非值语义(value semantics),这是理解对象复制行为的关键:
import sys# 分析不同复制方式下的内存地址和引用计数
original = [1, 2, [3, 4]]# 引用复制
reference = original
print(f"引用复制: id(original) = {id(original)}, id(reference) = {id(reference)}")
print(f"引用计数: {sys.getrefcount(original) - 1}") # 减1是因为getrefcount自身会创建一个临时引用# 浅复制
import copy
shallow = copy.copy(original)
print(f"浅复制: id(original) = {id(original)}, id(shallow) = {id(shallow)}")
print(f"嵌套对象: id(original[2]) = {id(original[2])}, id(shallow[2]) = {id(shallow[2])}")# 深复制
deep = copy.deepcopy(original)
print(f"深复制: id(original[2]) = {id(original[2])}, id(deep[2]) = {id(deep[2])}")
__copy__
和 __deepcopy__
自定义复制行为
Python 允许通过特殊方法自定义对象的复制行为,这为构建复杂数据结构提供了灵活性:
import copyclass ComplexObject:def __init__(self, value, reference):self.value = valueself.reference = referencedef __copy__(self):print("调用 __copy__")# 自定义浅复制行为
相关文章:
Python 进阶特性深度解析:从语法糖到内存管理的统一视角
生成式(推导式)的用法与内存效率分析 Python 的推导式不仅仅是语法糖,它们在内存管理和性能方面有着深刻的影响。理解推导式的工作原理,有助于我们写出更高效的代码。 推导式的内存模型分析 列表推导式在 CPython 解释器中的实现实际上比等价的 for 循环更为高效: # 列…...
Linux DMA Engine 基础
1 DMA基础信息查看 /sys/class/dma root:~# ls /sys/class/dma/ dma0chan0 dma1chan10 dma1chan27 dma2chan14 dma2chan30 dma2chan47 dma2chan63 dma3chan21 dma3chan38 dma3chan54 dma0chan1 dma1chan11 dma1chan28 dma2chan15 dma2chan31 dma2chan48 dma2…...

【JavaEE】SpringMVC 请求传参
目录 一、请求二、传递单个参数三、传递多个参数四、传递对象五、RequestParam注解 后端参数重命名(后端参数映射)六、传递数组七、传递集合,RequestParam八、传递JSON数据8.1 JSON字符串和Java对象互转8.1.1 Test注解8.1.2 Java对象转JSON8.…...

观察者模式说明(C语言版本)
观察者模式主要是为了实现一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态发生变化时,会通知所有观察者对象,使它们能够自动更新自己。下面使用C语言实现了一个具体的应用示例,有需要的可以参考…...

LeetCode 230.二叉搜索树中第K小的元素
题目:给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 小的元素(从 1 开始计数)。 思路: 代码: /*** Definition for a binary tree node.* public class Tre…...

11、集合框架
一、简介 Java集合框架位于java.util包中 Collection是Set和List的父类,Collections是工具类,提供了对集合进行排序、遍历等多种算法的实现。 ArrayList: 有序(放进去顺序和拿出来顺序一致),可重复 HashSet: 无序(放进去顺序和拿出来顺序不…...
git常用指令详解
文章目录 Git 基本指令的使用Git 远程仓库Git的分支管理 Git 基本指令的使用 git init //初始化一个git仓库,在当前目录下生成.git文件夹,并且会默认生成一个master分支。git clone <url> [directory] //url为git仓库地址,directory为本地目录 gi…...
Debezium 报错:“The db history topic is missing” 的处理方法
Debezium 报错:“The db history topic is missing” 的处理方法 一、引言 在使用 Debezium 进行数据同步时,可能会遇到一个常见的错误:“The db history topic is missing”。这个错误表明 Debezium 无法找到或访问其数据库历史记录主题(db history topic),这通常是由…...

Grok 3.0 Beta 版大语言模型评测
2025年2月17日至18日,全球首富埃隆马斯克(Elon Musk)携手其人工智能公司xAI,在美国重磅发布了Grok 3.0 Beta版。这款被誉为“迄今为止世界上最智能的语言模型”的AI,不仅集成了先进的“DeepSearch”搜索功能࿰…...

AcWing 3691:有向树形态 ← 卡特兰数 + 复旦大学考研机试题
【题目来源】 https://www.acwing.com/problem/content/3694/ 【题目描述】 求 N 个相同结点能够组成的二叉树的个数。 【输入格式】 一个整数 N。 【输出格式】 输出能组成的二叉树的个数。 【数据范围】 1≤N≤20 【输入样例】 3 【输出样例】 5 【算法分析】 ● 卡特…...
便携式动平衡仪Qt应用层详细设计方案(基于Qt Widgets)
便携式动平衡仪Qt应用层详细设计方案(基于Qt Widgets) 版本:1.0 日期:2023年10月 一、系统概述 1.1 功能需求 开机流程:长按电源键启动,全屏显示商标动画(快闪3~4次)。主界面&…...

SpringBoot源码解析(十一):准备应用上下文
SpringBoot源码系列文章 SpringBoot源码解析(一):SpringApplication构造方法 SpringBoot源码解析(二):引导上下文DefaultBootstrapContext SpringBoot源码解析(三):启动开始阶段 SpringBoot源码解析(四):解析应用参数args Sp…...

CSS 使用white-space属性换行
一、white-space属性的常见值 * 原本格式: 1、white-space:normal 默认值,空格和换行符会被忽略过滤掉;宽度不够时文本会自动换行 * 宽度足够时,normal 处理后的格式 * 宽度不够时, normal 处理后的格式 2、white-spa…...

论文笔记(七十二)Reward Centering(四)
Reward Centering(四) 文章概括摘要附录A 伪代码 文章概括 引用: article{naik2024reward,title{Reward Centering},author{Naik, Abhishek and Wan, Yi and Tomar, Manan and Sutton, Richard S},journal{arXiv preprint arXiv:2405.09999…...

Matlab——图像保存导出成好看的.pdf格式文件
点击图像的右上角,点击第一个保存按钮键。...

官方文档学习TArray容器
一.TArray中的元素相等 1.重载一下 元素中的 运算符,有时需要重载排序。接下来,我们将id 作为判断结构体的标识。 定义结构体 USTRUCT() struct FXGEqualStructInfo {GENERATED_USTRUCT_BODY() public:FXGEqualStructInfo(){};FXGEqualStructInfo(in…...

unxi-进程间通信
1.进程间通信实现方式 【1】同一主机 linux下通信方式: a.传统的进程间通信方式 管道 --- 进行数据传输的"管道" 无名管道 有名管道 信号 --- b.system v 进程间通信 (posix 进程间通信) 共享内存 (进程间…...

微型分组加密算法TEA、XTEA、XXTEA
微型分组加密算法TEA、XTEA、XXTEA TEA(Tiny Encryption Algorithm)算法是一种分组加密算法,由剑桥大学计算机实验室的David Wheeler和Roger Needham于1994年发明。TEA、XTEA、XXTEA算法采用64位的明文分组和128位的密钥。它使用Feistel…...

conda 基本命令
1、查询当前所有的环境 conda env list 2、创建虚拟环境 conda create -n 环境名 [pythonpython版本号] 其中[pythonpython版本号]可以不写 conda create -n test python3.12 我们输入conda env list看到我们的环境创建成功了,但是发现他是创建在我们默认的C盘的…...
详解 为什么 tcp 会出现 粘包 拆包 问题
TCP 会出现 粘包 和 拆包 问题,主要是因为 TCP 是 面向字节流 的协议,它不关心应用层发送的数据是否有边界,也不会自动分割或合并数据包。由于 TCP 的流控制和传输机制,数据可能在传输过程中被拆分成多个小的 TCP 包,或…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...