MATLAB中fft函数用法
目录
语法
说明
示例
含噪信号
高斯脉冲
余弦波
正弦波的相位
FFT 的插值
fft函数的功能是对数据进行快速傅里叶变换。
语法
Y = fft(X)
Y = fft(X,n)
Y = fft(X,n,dim)
说明
Y = fft(X) 用快速傅里叶变换 (FFT) 算法计算 X 的离散傅里叶变换 (DFT)。
-
如果 X 是向量,则 fft(X) 返回该向量的傅里叶变换。
-
如果 X 是矩阵,则 fft(X) 将 X 的各列视为向量,并返回每列的傅里叶变换。
-
如果 X 是一个多维数组,则 fft(X) 将沿大小不等于 1 的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。
Y = fft(X,n) 返回 n 点 DFT。如果未指定任何值,则 Y 的大小与 X 相同。
-
如果 X 是向量且 X 的长度小于 n,则为 X 补上尾零以达到长度 n。
-
如果 X 是向量且 X 的长度大于 n,则对 X 进行截断以达到长度 n。
-
如果 X 是矩阵,则每列的处理与在向量情况下相同。
-
如果 X 为多维数组,则大小不等于 1 的第一个数组维度的处理与在向量情况下相同。
Y = fft(X,n,dim) 返回沿维度 dim 的傅里叶变换。例如,如果 X 是矩阵,则 fft(X,n,2) 返回每行的 n 点傅里叶变换。
示例
含噪信号
使用傅里叶变换求噪声中隐藏的信号的频率分量。
指定信号的参数,采样频率为 1 kHz,信号持续时间为 1.5 秒。
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1500; % Length of signal
t = (0:L-1)*T; % Time vector
构造一个信号,其中包含幅值为 0.7 的 50 Hz 正弦量和幅值为 1 的 120 Hz 正弦量。
S = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
用均值为零、方差为 4 的白噪声扰乱该信号。
X = S + 2*randn(size(t));
在时域中绘制含噪信号。通过查看信号 X(t) 很难确定频率分量。
plot(1000*t(1:50),X(1:50))
title("Signal Corrupted with Zero-Mean Random Noise")
xlabel("t (milliseconds)")
ylabel("X(t)")
如图所示:

计算信号的傅里叶变换。
Y = fft(X);
计算双侧频谱 P2。然后基于 P2 和偶数信号长度 L 计算单侧频谱 P1。
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
定义频域 f 并绘制单侧幅值频谱 P1。与预期相符,由于增加了噪声,幅值并不精确等于 0.7 和 1。一般情况下,较长的信号会产生更好的频率逼近值。
f = Fs*(0:(L/2))/L;
plot(f,P1)
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")
如图所示:

现在,采用原始的、未破坏信号的傅里叶变换并检索精确幅值 0.7 和 1.0。
Y = fft(S);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);plot(f,P1)
title("Single-Sided Amplitude Spectrum of S(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")
如图所示:

高斯脉冲
将高斯脉冲从时域转换为频域。
指定信号的参数,采样频率为 44.1 kHz,信号持续时间为 1 秒。创建一倍标准差为 0.1 ms 的高斯脉冲。
Fs = 44100; % Sampling frequency
T = 1/Fs; % Sampling period
t = -0.5:T:0.5; % Time vector
L = length(t); % Signal lengthX = 1/(0.4*sqrt(2*pi))*(exp(-t.^2/(2*(0.1*1e-3)^2)));
在时域中绘制脉冲。
plot(t,X)
title("Gaussian Pulse in Time Domain")
xlabel("Time (t)")
ylabel("X(t)")
axis([-1e-3 1e-3 0 1.1])
如图所示:

fft 的执行时间取决于变换的长度。仅具有小质因数的变换长度比那些具有大质因数的变换长度的执行时间要快得多。
在此示例中,信号长度 L 是 44101,这是非常大的质数。为了改进 fft 的性能,从原始信号长度确定一个是下一个 2 次幂的输入长度。使用此输入长度调用 fft 会将具有尾随零的脉冲 X 填充到指定的变换长度。
n = 2^nextpow2(L);
将高斯脉冲转换为频域。
Y = fft(X,n);
定义频域并绘制唯一频率。
f = Fs*(0:(n/2))/n;
P = abs(Y/n).^2;plot(f,P(1:n/2+1))
title("Gaussian Pulse in Frequency Domain")
xlabel("f (Hz)")
ylabel("|P(f)|^2")
如图所示:

余弦波
比较时域和频域中的余弦波。指定信号的参数,采样频率为 1 kHz,信号持续时间为 1 秒。
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
创建一个矩阵,其中每一行代表一个频率经过缩放的余弦波。结果X为 3×1000 矩阵。第一行的波频为 50,第二行的波频为 150,第三行的波频为 300。
x1 = cos(2*pi*50*t); % First row wave
x2 = cos(2*pi*150*t); % Second row wave
x3 = cos(2*pi*300*t); % Third row waveX = [x1; x2; x3];
在单个图窗中按顺序绘制X的每行的前 100 个项,并比较其频率。
for i = 1:3subplot(3,1,i)plot(t(1:100),X(i,1:100))title("Row " + num2str(i) + " in the Time Domain")
end
如图所示:

指定 dim 参数沿 X 的行(即对每个信号)使用 fft。
dim = 2;
计算信号的傅里叶变换。
Y = fft(X,L,dim);
计算每个信号的双侧频谱和单侧频谱。
P2 = abs(Y/L);
P1 = P2(:,1:L/2+1);
P1(:,2:end-1) = 2*P1(:,2:end-1);
在频域内,为单个图窗中的每一行绘制单侧幅值频谱。
for i=1:3subplot(3,1,i)plot(0:(Fs/L):(Fs/2-Fs/L),P1(i,1:L/2))title("Row " + num2str(i) + " in the Frequency Domain")
end
如图所示:

正弦波的相位
创建一个由频率为 15 Hz 和 40 Hz 的两个正弦波组成的信号。第一个正弦波是相位为 −π/4 的余弦波,第二个正弦波是相位为 π/2 的余弦波。以 100 Hz 的频率对信号进行 1 秒钟的采样。
Fs = 100;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*15*t - pi/4) + cos(2*pi*40*t + pi/2);
计算信号的傅里叶变换。将变换幅值绘制为频率函数。
y = fft(x);
z = fftshift(y);ly = length(y);
f = (-ly/2:ly/2-1)/ly*Fs;
stem(f,abs(z))
title("Double-Sided Amplitude Spectrum of x(t)")
xlabel("Frequency (Hz)")
ylabel("|y|")
grid
如图所示:

计算变换的相位,删除小幅值变换值。将相位绘制为频率函数。
tol = 1e-6;
z(abs(z) < tol) = 0;theta = angle(z);stem(f,theta/pi)
title("Phase Spectrum of x(t)")
xlabel("Frequency (Hz)")
ylabel("Phase/\pi")
grid
如图所示:

FFT 的插值
通过填充零来对信号的傅里叶变换进行插值。
指定信号的参数,采样频率为 80 Hz,信号持续时间为 0.8 秒。
Fs = 80;
T = 1/Fs;
L = 65;
t = (0:L-1)*T;
创建一个 2 Hz 正弦信号及其高次谐波的叠加。该信号包含一个 2 Hz 余弦波、一个 4 Hz 余弦波和一个 6 Hz 正弦波。
X = 3*cos(2*pi*2*t) + 2*cos(2*pi*4*t) + sin(2*pi*6*t);
在时域中绘制该信号。
plot(t,X)
title("Signal superposition in time domain")
xlabel("t (ms)")
ylabel("X(t)")
如图所示:

计算信号的傅里叶变换。
Y = fft(X);
计算信号的单侧幅值频谱。
f = Fs*(0:(L-1)/2)/L;
P2 = abs(Y/L);
P1 = P2(1:(L+1)/2);
P1(2:end) = 2*P1(2:end);
在频域中绘制单侧频谱。由于信号的时间采样相当短,傅里叶变换的频率分辨率不够精确,不足以显示 4 Hz 附近的峰值频率。
plot(f,P1,"-o")
title("Single-Sided Spectrum of Original Signal")
xlabel("f (Hz)")
ylabel("|P1(f)|")
如图所示:

为了更好地评估峰值频率,您可以通过用零填充原始信号来增加分析窗的长度。这种方法以更精确的频率分辨率自动对信号的傅里叶变换进行插值。
从原始信号长度确定是下一个 2 次幂的新输入长度。用尾随零填充信号 X 以扩展其长度。计算填零后的信号的傅里叶变换。
n = 2^nextpow2(L);
Y = fft(X,n);
计算填零后的信号的单侧幅值频谱。由于信号长度 n 从 65 增加到 128,频率分辨率变为 Fs/n,即 0.625 Hz。
f = Fs*(0:(n/2))/n;
P2 = abs(Y/L);
P1 = P2(1:n/2+1);
P1(2:end-1) = 2*P1(2:end-1);
绘制填零后的信号的单侧频谱。此新频谱在 0.625 Hz 的频率分辨率内显示 2 Hz、4 Hz 和 6 Hz 附近的峰值频率。
plot(f,P1,"-o")
title("Single-Sided Spectrum of Padded Signal")
xlabel("f (Hz)")
ylabel("|P1(f)|")
如图所示:

参数说明
X — 输入数组
输入数组,指定为向量、矩阵或多维数组。
如果 X 为 0×0 空矩阵,则 fft(X) 返回一个 0×0 空矩阵。
n — 变换长度
变换长度,指定为 [] 或非负整数标量。为变换长度指定正整数标量可以改进 fft 的性能。通常,长度指定为 2 的幂或可分解为小质数的乘积的值。(质因数不大于 7)。如果 n 小于信号的长度,则 fft 忽略第 n 个条目之后的其余信号值,并返回截断后的结果。如果 n 为 0,则 fft 返回空矩阵。
dim — 沿其运算的维度
沿其运算的维度,指定为正整数标量。如果不指定维度,则默认为第一个大于 1 的数组维度。
-
fft(X,[],1) 沿 X 的各列进行运算,并返回每列的傅里叶变换。
![fft(X,[],1) column-wise operation](https://i-blog.csdnimg.cn/blog_migrate/bab83e1555c48d95b33511e1a6007797.png)
-
fft(X,[],2) 沿 X 的各行进行运算,并返回每行的傅里叶变换。
![fft(X,[],2) row-wise operation](https://i-blog.csdnimg.cn/blog_migrate/e3cc630d18efe8525ec950e2c5210b86.png)
如果 dim 大于 ndims(X),则 fft(X,[],dim) 返回 X。当指定 n 时,fft(X,n,dim) 将对 X 进行填充或截断,以使维度 dim 的长度为 n。
Y — 频域表示
频域表示,以向量、矩阵或多维数组形式返回。
如果 X 的类型为 single,则 fft 本身以单精度进行计算,Y 的类型也是 single。否则,Y 以 double 类型返回。
Y 的大小如下:
-
对于 Y = fft(X) 或 Y = fft(X,[],dim),Y 的大小等于 X 的大小。
-
对于 Y = fft(X,n,dim),size(Y,dim) 的值等于 n,而所有其他维度的大小保持与在 X 中相同。
如果 X 为实数,则 Y 是共轭对称的,且 Y 中特征点的数量为 ceil((n+1)/2)。
向量的离散傅里叶变换
Y = fft(X) 和 X = ifft(Y) 分别实现傅里叶变换和傅里叶逆变换。对于长度为 n 的 X 和 Y,这些变换定义如下:

其中
![]()
为 n 次单位根之一。
提示
-
fft 的执行时间取决于变换的长度。仅具有小质因数(不大于 7)的变换长度的执行时间明显快于本身是质数或具有较大质因数的变换长度的执行时间。
-
对于大多数 n 值,实数输入的 DFT 需要的计算时间大致是复数输入的 DFT 计算时间的一半。但是,当 n 有较大的质因数时,速度很少有差别或没有差别。
-
使用工具函数 fftw 可能会提高 fft 的速度。此函数控制用于计算特殊大小和维度的 FFT 算法优化。
算法
FFT 函数(fft、fft2、fftn、ifft、ifft2、ifftn)基于一个称为 FFTW [1] [2] 的库。
相关文章:
MATLAB中fft函数用法
目录 语法 说明 示例 含噪信号 高斯脉冲 余弦波 正弦波的相位 FFT 的插值 fft函数的功能是对数据进行快速傅里叶变换。 语法 Y fft(X) Y fft(X,n) Y fft(X,n,dim) 说明 Y fft(X) 用快速傅里叶变换 (FFT) 算法计算 X 的离散傅里叶变换 (DFT)。 如果 X 是向量&…...
【SpringBoot】【JWT】使用JWT的claims()方法存入Integer类型数据自动转为Double类型
生成令牌时使用Map存入Integer类型数据,将map使用claims方法放入JWT令牌后,取出时变成Double类型,强转报错: 解决: 将Integer转为String后存入JWT令牌,不会被自动转为其他类型,取出后转为Integ…...
Crack SmartGit
感谢大佬提供的资源 一、正常安装SmartGit 二、下载crackSmartGit crackSmartGit 发行版 - Gitee.com 三、使用crackSmartGit 1. 打开用户目录:C:\Users%用户名%\AppData\Roaming\syntevo\SmartGit。将crackSmartGit.jar和license.zip拷贝至 用户目录。 2. 用户…...
【备赛】在keil5里面创建新文件的方法+添加lcd驱动
一、先创建出文件夹和相应的.c和.h文件 因为在软件里面创建出的是在MDk文件那里面的,实际上是不存在你的新文件夹里的。 二、在keil5软件里面操作 1)添加文件夹 -*---------------------------------------------------------- 这里最好加上相对路径&…...
Rk3568驱动开发_驱动实现流程以及本质_3
1设备号: cat /proc/devices 编写驱动模块需要要想加载到内核并与设备正常通信,那就需要申请一个设备号,用cat /proc/devices可以查看已经被占用的设备号 设备号有什么用?不同设备其驱动实现不同用设备号去区分,例如字…...
【学习笔记】LLM+RL
文章目录 1 合成数据与模型坍缩(model collapse),1.1 递归生成数据与模型坍缩1.2 三种错误1.3 理论直觉1.4 PPL指标 2 基于开源 LLM 实现 O1-like step by step 慢思考(slow thinking),ollama,streamlit2.1…...
深入理解IP子网掩码子网划分{作用} 以及 不同网段之间的ping的原理 以及子网掩码的区域划分
目录 子网掩码详解 子网掩码定义 子网掩码进一步解释 子网掩码的作用 计算总结表 子网掩码计算 子网掩码对应IP数量计算 判断IP是否在同一网段 1. 计算步骤 2. 示例 3. 关键点 总结 不同网段通信原理与Ping流程 1. 同网段通信 2. 跨网段通信 网段计算示例 3. P…...
rust 前端npm依赖工具rsup升级日志
rsup是使用 rust 编写的一个前端 npm 依赖包管理工具,可以获取到项目中依赖包的最新版本信息,并通过 web 服务的形式提供查看、升级操作等一一系列操作。 在前一篇文章中,记录初始的功能设计,自己的想法实现过程。在自己的使用过…...
2.2 STM32F103C8T6最小系统板的四种有关固件的开发方式
2.2.1 四种有关固件的开发方式 四种有关于固件的开发方式从时间线由远及近分别是:寄存器开发、标准外设驱动库开发、硬件抽象层库开发、底层库开发。 四种开发方式各有优缺点,可以参考ST官方的测试与说明。 1.寄存器开发 寄存器编程对于从51等等芯片过渡…...
【C++】 stack和queue以及模拟实现
一、stack及其模拟实现 1.1 stack介绍 stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行 元素的插入与提取操作。stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器&am…...
python与C系列语言的差异总结(2)
Python有很多表达布尔值的方式,布尔常量False、0、Python零值None、空值(如空的列表[]和空字符串""),都被视为False。布尔常量True和其他一切值都被视为True。但不相等。这个自由度相比C类语言更加高。 if (not None):…...
Linux之文件系统
1.前言 文件 内容属性 文件分为被打开的文件(跟基础IO有关,在内存上)和没有被打开的文件(在磁盘上)。 在磁盘上找没有被打开的文件属于文件系统的工作 2.对硬件的理解 2.1 磁盘,服务器,机柜,机房 1.磁…...
LeetCode刷题 -- 23. 合并 K 个升序链表
小根堆排序与合并 K 个有序链表的实现 1. 介绍 本技术文档详细介绍了如何使用 小根堆(Min Heap) 实现 K 个有序链表的合并。 核心思想是: 使用 小根堆 维护当前最小的节点。每次取出堆顶元素(最小值)加入合并链表&…...
DeepSeek在MATLAB上的部署与应用
在科技飞速发展的当下,人工智能与编程语言的融合不断拓展着创新边界。DeepSeek作为一款备受瞩目的大语言模型,其在自然语言处理领域展现出强大的能力。而MATLAB,作为科学计算和工程领域广泛应用的专业软件,拥有丰富的工具包和高效…...
mapbox基础,使用geojson加载fill-extrusion三维填充图层
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️mapboxgl.Map style属性1.3 ☘️fill-extrusion三维填充图层样式二、�…...
基于 SpringBoot 的 “电影交流平台小程序” 系统的设计与实现
大家好,今天要和大家聊的是一款基于 SpringBoot 的 “电影交流平台小程序” 系统的设计与实现。项目源码以及部署相关事宜请联系我,文末附上联系方式。 项目简介 基于 SpringBoot 的 “电影交流平台小程序” 系统设计与实现的主要使用者分为 管理员 和…...
单片机裸机编程-时机管理
对于 RTOS 实时操作系统,我们是通过 TASK(任务)进行底层操作的,这与裸机编程中的函数(fun)类似。不同的任务或函数实现不同的功能,在RTOS中,单片机有信号量、队列等不同任务之间的通…...
Flutter系列教程之(2)——Dart语言快速入门
目录 1.变量与类型 1.1 num类型 1.2 String类型 1.3 Object与Dynamic 1.4 类型判断/转换 1.5 变量和常量 2.方法/函数 3.类、接口、抽象类 3.1 类 3.2 接口 4.集合 4.1 List 4.2 Set 4.3 Map 5.总结 Dart语言的语法和Kotlin、Java有类似之处,这里就通…...
pyecharts介绍
文章目录 介绍安装pyecharts基本使用全局配置选项 折线图相关配置地图模块使用柱状图使用 介绍 echarts虑是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可,而Pyhon是门富有表达力的语言&a…...
前缀和相关题目记录(未完待续...)
1 前缀和 一维前缀和是指对于一个数组 a a a,我们定义一个新的数组 s s s,其中每个元素 s [ i ] s[i] s[i] 表示从数组开头到第 i i i 个元素的累加和: s [ i ] a [ 1 ] a [ 2 ] ⋯ a [ i ] ∑ j 1 i a [ j ] s[i] a[1] a[2] \…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
规则与人性的天平——由高考迟到事件引发的思考
当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...
2.3 物理层设备
在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...
Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...
npm install 相关命令
npm install 相关命令 基本安装命令 # 安装 package.json 中列出的所有依赖 npm install npm i # 简写形式# 安装特定包 npm install <package-name># 安装特定版本 npm install <package-name><version>依赖类型选项 # 安装为生产依赖(默认&…...
