当前位置: 首页 > news >正文

【2025深度学习环境搭建-2】pytorch+Docker+VS Code+DevContainer搭建本地深度学习环境

上一篇文章:【2025深度学习环境搭建-1】在Win11上用WSL2和Docker解锁GPU加速

  • 先启动Docker!
  • 对文件内容有疑问,就去问AI

一、用Docker拉取pytorch镜像,启动容器,测试GPU

docker pull pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel
在这里插入图片描述

docker run -it --rm --gpus all pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel nvidia-smi

别忘了用--gpus all启用GPU

在这里插入图片描述
能出现显卡信息,说明基于该镜像的容器,是可以用gpu的。之后要把这个镜像应用到到我们的开发环境之中(使用VS Code插件Dev Container)

二、安装VS Code插件

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、创建项目文件(测试pytorch和GPU的python程序)

创建文件夹pytorch-test,并在其目录下创建如下文件夹和文件(主要创建app.py和.devcontainer就行,其他的随意):
在这里插入图片描述

需要创建的文件,内容如下:

requirements.txt

这个文件内容为空

app.py

import torch
a=[1,23,4,5,.4]
def print_gpu_info():# 检查CUDA是否可用cuda_available = torch.cuda.is_available()print(f"CUDA 是否可用: {cuda_available}")if not cuda_available:return# 获取GPU数量device_count = torch.cuda.device_count()print(f"\n可用的GPU数量: {device_count}")# 打印每个GPU的详细信息for i in range(device_count):print(f"\n=== GPU {i} ===")print(f"名称: {torch.cuda.get_device_name(i)}")prop = torch.cuda.get_device_properties(i)print(f"总内存: {prop.total_memory / 1024**3:.2f} GB")print(f"多处理器数量: {prop.multi_processor_count}")print(f"计算能力: {prop.major}.{prop.minor}")def test_gpu_operation():# 尝试在GPU上执行操作if torch.cuda.is_available():try:# 创建测试张量x = torch.randn(3, 3).cuda()y = torch.randn(3, 3).cuda()z = x + y  # 执行GPU计算# 验证设备类型print("\n=== GPU 操作测试 ===")print(f"张量所在设备: {x.device}")print("GPU 计算成功!")return Trueexcept Exception as e:print(f"\nGPU 操作失败: {str(e)}")return Falseelse:print("没有可用的GPU进行测试")return Falseif __name__ == "__main__":print("===== PyTorch GPU 信息 =====")print_gpu_info()print("\n===== GPU 功能测试 =====")test_result = test_gpu_operation()print("\n===== 最终状态 =====")print(f"GPU 是否可用: {torch.cuda.is_available()}")print(f"GPU 是否可用: {test_result}")print(f"PyTorch 版本: {torch.__version__}")

.devcontainer/devcontainer.json

// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-dockerfile
{"name": "GPU Development,torch2.5+cu124+cudnn9,Py3.11.10","runArgs": ["--gpus=all"  // 添加 GPU 支持],"build": {// Sets the run context to one level up instead of the .devcontainer folder."context": "..",// Update the 'dockerFile' property if you aren't using the standard 'Dockerfile' filename."dockerfile": "Dockerfile"},"customizations": {"vscode": {"extensions": ["ms-python.python","ms-toolsai.jupyter","ms-python.autopep8","ms-python.vscode-pylance","mechatroner.rainbow-csv","ms-azuretools.vscode-docker","ms-toolsai.datawrangler"]}}// Features to add to the dev container. More info: https://containers.dev/features.// "features": {},// Use 'forwardPorts' to make a list of ports inside the container available locally.// "forwardPorts": [],// Uncomment the next line to run commands after the container is created.// "postCreateCommand": "cat /etc/os-release",// Configure tool-specific properties.// "customizations": {},// Uncomment to connect as an existing user other than the container default. More info: https://aka.ms/dev-containers-non-root.// "remoteUser": "devcontainer"
}

.devcontainer/Dockerfile

# 使用 PyTorch 官方镜像作为基础镜像
FROM pytorch/pytorch:2.5.0-cuda12.4-cudnn9-devel# 设置工作目录(容器中的)
WORKDIR /workspace# 将本地代码复制到容器中
COPY . /workspace# 安装额外的依赖(如果有)
RUN pip install --no-cache-dir -r requirements.txt# 暴露端口(如果有需要)
# EXPOSE 8000# 定义容器启动时运行的命令
# CMD ["python", "app.py"]

README.md

## pip环境导入导出
从requirements.txt导入环境:
`pip install --no-cache-dir -r requirements.txt`
导出环境到文件requirements.txt:
`pip freeze | grep -v '@ file://' > requirements.txt`

四、打开项目文件,并使用容器环境

在VS Code中打开项目文件
在这里插入图片描述
按下【F1】在上方选择【Dev Containers:Reopen in Container】
在这里插入图片描述
此时查看vscode左下角,蓝底白字,显示Dev Container: GPU Development,torch2.5+..,就说明我们现在的项目torch-test已经在使用刚才拉取的pytorch容器了!
在这里插入图片描述
在左边找到app.py,运行他,若显示可用gpu大于0,表示项目torch-test中的python程序可以使用gpu。之后我们需要运行深度学习程序时,使用这里的步骤即可,不需要安装额外的python环境了,若需要安装其他包,那就修改requirements.txt文件即可。

在这里插入图片描述

五、需要安装其他python包怎么办?

若我们需要其他python包,那就在终端直接安装,测试能用之后,用pip freeze | grep -v '@ file://' > requirements.txt将当前python环境中的包导出到文件requirements.txt中。
之后再启动项目时,Dev Container会自动帮我们根据文件requirements.txt安装环境。

清空文件requirements.txt中的内容,之后重新构建容器,即可得到一个原始镜像中的python环境

补充:如何重新构建容器

按【F1】,搜索【Dev Containers:Rebuild Container】

在这里插入图片描述

补充:在镜像中添加VS Code插件

可以在镜像中添加VS Code插件,之后每次构建,镜像都会自动安装插件,不用自己手动安装了

方法:右键单击插件,点击【Add to devcontainer.json】

在这里插入图片描述

参考

教程:使用 Visual Studio Code 创建 Docker 应用

借助 Visual Studio Code 将 Docker 容器用作开发环境

相关文章:

【2025深度学习环境搭建-2】pytorch+Docker+VS Code+DevContainer搭建本地深度学习环境

上一篇文章:【2025深度学习环境搭建-1】在Win11上用WSL2和Docker解锁GPU加速 先启动Docker!对文件内容有疑问,就去问AI 一、用Docker拉取pytorch镜像,启动容器,测试GPU docker pull pytorch/pytorch:2.5.0-cuda12.4…...

在CentOS 7上安装和使用Spleeter音频分离工具的详细步骤

在音频处理领域,Spleeter是一款优秀的开源工具,能够帮助用户轻松实现音频文件中人声和背景音的分离。本文将详细介绍在CentOS 7系统上安装和配置Spleeter的步骤,以及如何使用Spleeter进行音频分离。 准备环境: 在开始安装Spleeter之前&…...

【1】VS Code 新建上位机项目---C#基础语法

VS Code 新建上位机项目---C#基础语法 1 基本概念1.1 准备工具1.2 新建项目2 C#编程基础2.1 命名空间和类2.2 数据类型2.3 控制台输入输出2.3.1 输入输出: write 与 read2.3.2 格式化 : string.Foramt() 与 $2.3.3 赋值与运算2.4 类型转换2.4.1 数值类型之间的转换:(int)2.4…...

电脑经常绿屏(蓝屏)怎么办(解决方法)?

一、排查系统与驱动问题 进入安全模式修复系统 强制重启电脑 3 次触发恢复环境,选择 疑难解答 > 高级选项 > 启动设置 > 重启,按 F5 或 5 进入带网络连接的安全模式3。 在安全模式下,尝试卸载最近安装的软件或更新,尤其…...

clickhouse--本地表和分布式表,副本机制,分片集群

1、本地表和分布式表 ck的表分为两种: 分布式表   一个逻辑上的表,可以理解为数据库中的视图,一般查询都查询分布式表。分布式表引擎会将我们的查询请求路由本地表进行查询,然后进行汇总最终返回给用户。本地表   实际存储数据的表。 …...

react hook useReducer

useReducer useReducer 是 React 中用于状态管理的 Hook,与 useState 不同,它更适合处理复杂的状态逻辑. const [state, dispatch] useReducer(reducer, initialArg, init?) reducer 是一个处理函数,用于更新状态, reducer 里面包含了两个…...

告别阻塞,迎接高效:掌握 AsyncIOScheduler 实现异步任务调度

前言 时间在编程中是宝贵的,直接关联到效率与灵活性,尤其在异步编程里,如何优雅地管理定时任务简直是一门“艺术”。如果你还在用 time.sleep() 来控制延时任务,恐怕你早已体会过它的“痛苦”:程序卡住、线程阻塞、性能急剧下滑。想象一下,你的程序如同一个永远无法按时…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之加入购物车和显示购物车列表

🧸安清h:个人主页 🎥个人专栏:【Spring篇】【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🚀1.加入购物车-数…...

再谈影刀RPA成长学习路线

近期,我将使用影刀RPA开发各电商平台移动端商品信息爬取,实战流程会在QQ群里分享,欢迎大家进群,一起探讨交流! 1. 影刀RPA学习路线概述 1.1 学习目标与意义 学习影刀RPA的目标在于掌握一种高效的工作自动化工具,以提…...

PHP-综合4

[题目信息]: 题目名称题目难度PHP-综合42 [题目考点]: PHP综合训练[Flag格式]: SangFor{Ouk3i63BuShgxqdRcn_9kMNqKFDe5j4f}[环境部署]: docker-compose.yml文件或者docker tar原始文件。 http://分配ip:2087[题目writeup]:…...

学习笔记-沁恒第五讲-米醋

一&#xff0c;设置音量 上次 这次 #include "uart.h" #include "debug.h" void audio_init() { Usart3_Init(); } void audio_play(u8 num) { u8 string[]{0x7e,0x05,0x41,0x00,num,0x05^0x41^0x00^num,0xef}; u8 i; for(i0;i<7;i) { USART_Se…...

【JavaScript】JavaScript 常见概念 - 变量与数据类型 - 运算符 - 条件语句 - 循环 - 函数 - 数组操作 - 对象

1. 变量与数据类型 变量声明 JavaScript 提供了三种方式来声明变量&#xff1a; var&#xff08;全局或函数作用域&#xff0c;不推荐&#xff09;let&#xff08;块级作用域&#xff0c;推荐&#xff09;const&#xff08;常量&#xff0c;块级作用域&#xff0c;推荐&…...

Web自动化之Selenium添加网站Cookies实现免登录

在使用Selenium进行Web自动化时&#xff0c;添加网站Cookies是实现免登录的一种高效方法。通过模拟浏览器行为&#xff0c;我们可以将已登录状态的Cookies存储起来&#xff0c;并在下次自动化测试或爬虫任务中直接加载这些Cookies&#xff0c;从而跳过登录步骤。 Cookies简介 …...

AI手机的技术细节

前序&#xff1a;先说各个功能涉及到的技术&#xff0c;再说宏观系统架构。AI手机有这样几个做法&#xff0c;给手机侧边增加一个按键&#xff1b;把手机的语音助手做的很好&#xff0c;能够快速稳定的进行唤醒&#xff1b;通过特殊形式的触摸手机的曲面屏位置等来进行唤醒AI …...

10. 九转金丹炼矩阵 - 矩阵置零(标记优化)

哪吒在数据修仙界中继续他的修炼之旅。这一次,他来到了一片神秘的金丹谷,谷中有一座巨大的九转金丹炉,炉身闪烁着神秘的光芒。金丹炉的入口处有一块巨大的石碑,上面刻着一行文字:“欲破此炉,需以九转金丹之力,炼矩阵之零,标记优化定乾坤。” 哪吒定睛一看,石碑上还有…...

[实现Rpc] 客户端 | Requestor | RpcCaller的设计实现

目录 Requestor类的实现 框架 完善 onResponse处理回复 完整代码 RpcCaller类的实现 1. 同步调用 call 2. 异步调用 call 3. 回调调用 call Requestor类的实现 &#xff08;1&#xff09;主要功能&#xff1a; 客户端发送请求的功能&#xff0c;进行请求描述对服务器…...

Java 大视界 -- 深度洞察 Java 大数据安全多方计算的前沿趋势与应用革新(52)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

山东大学软件学院nosql实验三

实验题目&#xff1a; 用Java做简单查询(2学时) 实验内容 用API方式&#xff0c;做简单查询。 实验要求 在以下要求中选择至少2个&#xff0c;使用Java语言实现数据查询&#xff0c;最终把数据输出到前端界面。 &#xff08;1&#xff09;找出年龄小于20岁的所有学生 &…...

正态分布的奇妙性质:为什么奇数阶中心矩(odd central moments)为零?

正态分布的奇妙性质&#xff1a;为什么奇数阶矩为零&#xff1f; 正态分布&#xff08;Normal Distribution&#xff09;是统计学中最常见的分布之一&#xff0c;它的钟形曲线几乎无处不在&#xff0c;从身高体重到测量误差&#xff0c;都能看到它的影子。除了均值和方差这两个…...

【入门音视频】音视频基础知识

&#x1f308;前言&#x1f308; 这个系列在我学习过程中&#xff0c;对音视频知识归纳总结的笔记。因为音视频相关讲解非常稀少&#xff0c;所以我希望通过这个音视频系列&#xff0c;跟大家一起学习音视频&#xff0c;希望减少初学者在学习上的压力。同时希望也欢迎指出文章的…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙

WebGL&#xff1a;在浏览器中解锁3D世界的魔法钥匙 引言&#xff1a;网页的边界正在消失 在数字化浪潮的推动下&#xff0c;网页早已不再是静态信息的展示窗口。如今&#xff0c;我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室&#xff0c;甚至沉浸式的V…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...