当前位置: 首页 > news >正文

TMDS视频编解码算法

因为使用的是DDR进行传输,即双倍频率采样,故时钟只用是并行数据数据的5倍,而不是10倍。

  TMDS算法流程:

视频编码TMDS算法流程实现: 

`timescale 1 ps / 1ps
//DVI编码通常用于视频传输,将并行数据转换为适合串行传输的格式。
module dvi_encoder (input            clkin,    // pixel clock inputinput            rstin,    // async. reset input (active high)input      [7:0] din,      // data inputs: expect registeredinput            c0,       // c0 inputinput            c1,       // c1 input;c0 和 c1 用于指示视频的**水平同步(HSYNC)和垂直同步(VSYNC)**信号。input            de,       // de inputoutput reg [9:0] dout      // data outputs
);// Counting number of 1s and 0s for each incoming pixel
// component. Pipe line the result.
// Register Data Input so it matches the pipe lined adder
// outputreg [3:0] n1d; //number of 1s in din
reg [7:0] din_q;//计算像素数据中“1”的个数
always @ (posedge clkin) beginn1d <=#1 din[0] + din[1] + din[2] + din[3] + din[4] + din[5] + din[6] + din[7];din_q <=#1 din;
end///
// Stage 1: 8 bit -> 9 bit
// Refer to DVI 1.0 Specification, page 29, Figure 3-5
///
wire decision1;//decision1 为真,表示需要反转数据。
assign decision1 = (n1d > 4'h4) | ((n1d == 4'h4) & (din_q[0] == 1'b0));wire [8:0] q_m;
assign q_m[0] = din_q[0];
assign q_m[1] = (decision1) ? (q_m[0] ^~ din_q[1]) : (q_m[0] ^ din_q[1]);
assign q_m[2] = (decision1) ? (q_m[1] ^~ din_q[2]) : (q_m[1] ^ din_q[2]);
assign q_m[3] = (decision1) ? (q_m[2] ^~ din_q[3]) : (q_m[2] ^ din_q[3]);
assign q_m[4] = (decision1) ? (q_m[3] ^~ din_q[4]) : (q_m[3] ^ din_q[4]);
assign q_m[5] = (decision1) ? (q_m[4] ^~ din_q[5]) : (q_m[4] ^ din_q[5]);
assign q_m[6] = (decision1) ? (q_m[5] ^~ din_q[6]) : (q_m[5] ^ din_q[6]);
assign q_m[7] = (decision1) ? (q_m[6] ^~ din_q[7]) : (q_m[6] ^ din_q[7]);
assign q_m[8] = (decision1) ? 1'b0 : 1'b1;   //第9位 q_m[8] 用于指示数据是否被反转,0是数据被反转/
// Stage 2: 9 bit -> 10 bit
// Refer to DVI 1.0 Specification, page 29, Figure 3-5
/
//计算1和0的个数
reg [3:0] n1q_m, n0q_m; // number of 1s and 0s for q_m
always @ (posedge clkin) beginn1q_m  <=#1 q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7];n0q_m  <=#1 4'h8 - (q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7]);
end//控制令牌(Control Tokens),用于在视频的消隐期(Blanking Period)传输同步信息。
//这些控制令牌是10位的固定编码值,用于表示视频的**水平同步(HSYNC)和垂直同步(VSYNC)**信号
parameter CTRLTOKEN0 = 10'b1101010100;
parameter CTRLTOKEN1 = 10'b0010101011;
parameter CTRLTOKEN2 = 10'b0101010100;
parameter CTRLTOKEN3 = 10'b1010101011;/*
差异计数器(Disparity Counter):在TMDS编码中,差异计数器用于跟踪当前信号的直流偏差(DC Disparity)。直流偏差是指信号中"1"和"0"的数量之差。通过调整编码方式(如反转数据),差异计数器可以帮助实现直流平衡,减少信号的直流分量。最高位是符号位(MSB is the sign bit):
差异计数器的最高位(MSB)表示偏差的方向:如果最高位为 0,表示偏差为负(即"0"的数量多于"1")。如果最高位为 1,表示偏差为正(即"1"的数量多于"0")。其余位表示偏差的大小。
*/
reg [4:0] cnt; //disparity counter, MSB is the sign bit
wire decision2, decision3;assign decision2 = (cnt == 5'h0) | (n1q_m == n0q_m);  //1和0的数量相等
/
// [(cnt > 0) and (N1q_m > N0q_m)] or [(cnt < 0) and (N0q_m > N1q_m)]
/
assign decision3 = (~cnt[4] & (n1q_m > n0q_m)) | (cnt[4] & (n0q_m > n1q_m));//即cnt[4]=0                    cnt[4]=1// pipe line alignmentreg       de_q, de_reg;
reg       c0_q, c1_q;
reg       c0_reg, c1_reg;
reg [8:0] q_m_reg;always @ (posedge clkin) beginde_q    <=#1 de;de_reg  <=#1 de_q;c0_q    <=#1 c0;c0_reg  <=#1 c0_q;c1_q    <=#1 c1;c1_reg  <=#1 c1_q;q_m_reg <=#1 q_m;
end///
// 10-bit out
// disparity counter
///
always @ (posedge clkin or posedge rstin) beginif(rstin) begindout <= 10'h0;cnt <= 5'h0;end else beginif (de_reg) beginif(decision2) begindout[9]   <=#1 ~q_m_reg[8]; dout[8]   <=#1 q_m_reg[8]; dout[7:0] <=#1 (q_m_reg[8]) ? q_m_reg[7:0] : ~q_m_reg[7:0];cnt <=#1 (~q_m_reg[8]) ? (cnt + n0q_m - n1q_m) : (cnt + n1q_m - n0q_m);  //第一个cnt代表当前cnt值,后面两个cnt代表上一次执行时的值end else beginif(decision3) begindout[9]   <=#1 1'b1;dout[8]   <=#1 q_m_reg[8];dout[7:0] <=#1 ~q_m_reg[7:0];cnt <=#1 cnt + {q_m_reg[8], 1'b0} + (n0q_m - n1q_m);end else begindout[9]   <=#1 1'b0;dout[8]   <=#1 q_m_reg[8];dout[7:0] <=#1 q_m_reg[7:0];cnt <=#1 cnt - {~q_m_reg[8], 1'b0} + (n1q_m - n0q_m);endendend else begincase ({c1_reg, c0_reg})  //进入消隐期2'b00:   dout <=#1 CTRLTOKEN0;2'b01:   dout <=#1 CTRLTOKEN1;2'b10:   dout <=#1 CTRLTOKEN2;default: dout <=#1 CTRLTOKEN3;endcasecnt <=#1 5'h0;endend
endendmodule 

解码:使用xilinx原语serdes进行并转串,serdes分为master和slave模式,其中的master使用的是8bit数据,另外带两个bit的扩展位放在了slave中。

参考:正点原子 

相关文章:

TMDS视频编解码算法

因为使用的是DDR进行传输&#xff0c;即双倍频率采样&#xff0c;故时钟只用是并行数据数据的5倍&#xff0c;而不是10倍。 TMDS算法流程&#xff1a; 视频编码TMDS算法流程实现&#xff1a; timescale 1 ps / 1ps //DVI编码通常用于视频传输&#xff0c;将并行数据转换为适合…...

C++程序员内功修炼——Linux C/C++编程技术汇总

在软件开发的宏大版图中&#xff0c;C 语言宛如一座巍峨的高山&#xff0c;吸引着无数开发者攀登探索。而 Linux 操作系统&#xff0c;以其开源、稳定、高效的特性&#xff0c;成为了众多开发者钟爱的开发平台。将 C 与 Linux 相结合&#xff0c;就如同为开发者配备了一把无坚不…...

【数据结构】链表中快指针和慢指针

目录 一、找出并返回链表的中间结点 二、输出链表中倒数第k个结点 三、判断链表中是否有环 四、两个单链表相交 一、找出并返回链表的中间结点 给你单链表的头结点 head ,请你找出并返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点。 要求&#xff1a;只遍历…...

6_zookeeper集群配置

配置 一、配置myid文件 # 进入解压好的文件夹下面 touch myid vim myid # master节点写0&#xff0c;slave1节点写1&#xff0c;slave2节点写2二、配置zoo.cfg文件 1.在master节点编辑zookeeper配置文件 # 进入解压好的文件夹下面 cd conf/ cp zoo_sample.cfg zoo.cfg vim …...

Docker核心概念

容器介绍 Docker 是世界领先的软件容器平台&#xff0c;所以想要搞懂 Docker 的概念我们必须先从容器开始说起。 什么是容器? 先来看看容器较为官方的解释 一句话概括容器&#xff1a;容器就是将软件打包成标准化单元&#xff0c;以用于开发、交付和部署。 容器镜像是轻量…...

LD_PRELOAD 绕过 disable_function 学习

借助这位师傅的文章来学习通过LD_PRELOAD来绕过disable_function的原理 【PHP绕过】LD_PRELOAD bypass disable_functions_phpid绕过-CSDN博客 感谢这位师傅的贡献 介绍 静态链接&#xff1a; &#xff08;1&#xff09;举个情景来帮助理解&#xff1a; 假设你要搬家&#x…...

如何用JAVA实现布隆过滤器?

目录 引言 布隆过滤器的原理 1. 核心思想 2. 优缺点 布隆过滤器的使用场景 Java 实现布隆过滤器 1. 实现步骤 2. 代码实现 3. 代码说明 4. 测试结果 布隆过滤器的优化 总结 引言 布隆过滤器&#xff08;Bloom Filter&#xff09;是一种高效的概率数据结构&#xff0…...

游戏开发 游戏开始界面

目录 前言 一 游戏初始化界面的分析 二 游戏的大概框架 三 显示界面的开发 四 完整代码 总结 我们可以来看看游戏初始界面是什么样的 勇士游戏样例 前言 这里是开发游戏的初始界面 一 游戏初始化界面的分析 我们需要一个背景图&#xff0c;开始游戏图标&#xff0…...

Python解析 Flink Job 依赖的checkpoint 路径

引言 Apache Flink 是一个强大的分布式处理框架&#xff0c;广泛用于批处理和流处理任务。其 checkpoint 机制是确保容错的关键功能&#xff0c;允许在计算过程中保存状态&#xff0c;以便在故障时从最近的 checkpoint 恢复。本文详细探讨了一个 Python 脚本&#xff0c;该脚本…...

Javascript网页设计案例:通过PDFLib实现一款PDF分割工具,分割方式自定义-完整源代码,开箱即用

功能预览 一、工具简介 PDF 分割工具支持以下核心功能: 拖放或上传 PDF 文件:用户可以通过拖放或点击上传 PDF 文件。两种分割模式: 指定范围:用户可以指定起始页和结束页,提取特定范围的内容。固定间距:用户可以设置间隔页数(例如每 5 页分割一次),工具会自动完成分…...

计算机视觉算法实战——产品分拣(主页有源码)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ 1. 领域简介✨✨ 产品分拣是工业自动化和物流领域的核心技术&#xff0c;旨在通过机器视觉系统对传送带上的物品进行快速识别、定位和分类&a…...

汽车软件︱AUTO TECH China 2025 广州国际汽车软件与安全技术展览会:开启汽车科技新时代

在汽车产业智能化与网联化飞速发展的当下&#xff0c;汽车软件与安全技术已然成为行业变革的核心驱动力。2025年11月20 - 22日&#xff0c;AUTO TECH China 2025 广州国际汽车软件与安全技术展览会将在广州保利世贸博览馆盛大开幕&#xff0c;这场展会将汇聚行业前沿成果&#…...

Visual Studio打开文件后,中文变乱码的解决方案

文件加载 使用Unicode&#xff08;UTF-8&#xff09;编码加载文件 C:\WorkSpace\Assets\Scripts\UI\View\ExecuteComplateView.cs时&#xff0c;有些字节已用Unicode替换字符替换。保存该文件将不会保留原始文件内容。...

Python爬虫selenium验证-中文识别点选+图片验证码案例

1.获取图片 import re import time import ddddocr import requests from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.service import Service from selenium.webdriver.support.wait import WebDriverWait from …...

MySQL后端返回给前端的时间变了(时区问题)

问题&#xff1a;MySQL里的时间例如为2025-01-10 21:19:30&#xff0c;但是返回到前端就变成了2025-01-10 13:19:30&#xff0c;会出现小时不一样或日期变成隔日的问题 一般来说设计字段时会使用datetime字段类型&#xff0c;这是一种用于时间的字段类型&#xff0c;而这个类型…...

计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

前端性能优化面试题及参考答案

目录 如何通过合并文件减少 HTTP 请求次数? 列举 CDN 加速的适用场景与实现原理。 如何利用 HTTP/2 的多路复用特性优化资源加载? 描述 DNS 预解析的实现方式及其对性能的影响。 异步加载脚本时,async 与 defer 属性的区别是什么? 如何优化 AJAX 请求的并发数与优先级…...

【NLP 37、激活函数 ③ relu激活函数】

—— 25.2.23 ReLU广泛应用于卷积神经网络&#xff08;CNN&#xff09;和全连接网络&#xff0c;尤其在图像分类&#xff08;如ImageNet&#xff09;、语音识别等领域表现优异。其高效性和非线性特性使其成为深度学习默认激活函数的首选 一、定义与数学表达式 ReLU&#xff0…...

量子计算的威胁,以及企业可以采取的措施

当谷歌、IBM、Honeywell和微软等科技巨头纷纷投身量子计算领域时&#xff0c;一场技术军备竞赛已然拉开帷幕。 量子计算虽能为全球数字经济带来巨大价值&#xff0c;但也有可能对相互关联的系统、设备和数据造成损害。这一潜在影响在全球网络安全领域引起了强烈关注。也正因如…...

C#初级教程(5)——解锁 C# 变量的更多奥秘:从基础到进阶的深度指南

一、变量类型转换&#xff1a;隐式与显式的门道 &#xff08;一&#xff09;隐式转换&#xff1a;编译器的 “贴心小助手” 隐式转换是编译器自动进行的类型转换&#xff0c;无需开发者手动干预。这种转换通常发生在将取值范围小的数据类型赋值给取值范围大的数据类型时&#…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...