Unity Shader 学习13:屏幕后处理 - 使用高斯模糊的Bloom辉光效果
目录
一、基本的后处理流程 - 以将画面转化为灰度图为例
1. C#调用shader
2. Shader实现效果
二、Bloom辉光效果
1. 主要变量
2. Shader效果
(1)提取较亮区域 - pass1
(2)高斯模糊 - pass2&3
(3)图像混合 - pass4
3. C#调用流程
一、基本的后处理流程 - 以将画面转化为灰度图为例
需要使用到2个文件:Shader用来写效果处理,C#在每帧渲染时调用shader。
① shader文件就和普通的效果一样正常写,只是处理对象是 整个场景渲染好后(此时已经是一张平面贴图)的贴图:_MainTex;以及可以省略顶点着色器的输入结构体,用unity提供的appdata_img代替。
② 而C#脚本则是在OnRenderImage函数中根据算法逻辑按需使用pass进行渲染。这里将图片转为灰度图是不需要什么逻辑啦,基本上就是可以直接进行渲染,但是后面讲的bloom效果就需要加点东西。
1. C#调用shader
使用 Shader.Find 找到相应shader并创建对应的材质material,在OnRenderImage中可以利用 m.setxxx( ) 来给shader的参数赋值,再利用 Graphics.Blit(src, dest, m) 使该材质作用于_MainTex并渲染到屏幕上。
这里要传的参数就是变灰的程度。
public class BWEffect : MonoBehaviour
{Material m;[Range(0, 1)] public float bwBlend = 0;void Awake(){m = new Material(Shader.Find("Hidden/BWDiffuse"));}void OnRenderImage(RenderTexture src, RenderTexture dest){Debug.Log("OnRenderImage called");m.SetFloat("_bwBlend", bwBlend); //传参Graphics.Blit(src, dest, m); //渲染}
}
2. Shader实现效果
在片元着色器中,对_MainTex采样,并用 col.r * 0.3 + col.g * 0.59 + col.b * 0.11 提取出其灰度,用 C# 传来的 灰度程度值 在原图和灰图之间做插值。
Shader "Hidden/BWDiffuse"
{Properties{_MainTex ("Texture", 2D) = "white" {}_bwBlend ("WBlend", Range(0,1)) = 0}SubShader{Cull Off ZWrite Off ZTest AlwaysPass{CGPROGRAM#pragma vertex vert_img#pragma fragment frag#include "UnityCG.cginc"uniform sampler2D _MainTex;uniform float _bwBlend;fixed4 frag (v2f_img i) : SV_Target{fixed4 col = tex2D(_MainTex, i.uv); //原色float lum = col.r * 0.3 + col.g * 0.59 + col.b * 0.11; float4 bw = float4(lum, lum, lum, 1); //灰色float4 result = lerp(col, bw, _bwBlend); //插值return result;}ENDCG}}
}
二、Bloom辉光效果
Bloom效果的实现可以分为3步:
① 提取较亮区域
② 用高斯模糊,模拟亮区的光线扩散
③模糊图与原图混合
1. 主要变量
[Range(0, 4)] public int iterations = 3;//高斯模糊迭代次数
[Range(0.2f, 3.0f)] public float blurSpread = 0.6f;//每次迭代模糊范围的增长速度
[Range(1, 8)] public int downSample = 2;//将图片像素量减少的降采样系数,能减少需要处理的像素量,提高性能
[Range(0.0f, 4.0f)] public float luminaceThreshold = 0.6f;//模糊阈值
luminaceThreshold:模糊阈值,它能决定提取亮部的区域范围
iterations:迭代次数,可以对图片进行多次的模糊
blurSpread:每次迭代模糊后,都要对模糊范围 (BlurSize) 进行扩大,其控制每次扩大的速度
blurSize:就是上述的blurSize,其与blurSpread的关系为 1.0f + 迭代次数i * blurSpeed ,加一是为了保证值最小能为1
downSample:对原图进行降采样,也就是降低图片的像素,这样既能优化性能,又能获得更平滑的模糊效果
2. Shader效果
(1)提取较亮区域 - pass1
将图片转为灰度,灰度就能表示该像素的亮度,之后对亮度减去阈值,此时只有原本亮度值大于阈值的值能够依然保持为正数。
不知道有没有人和我一样对最后一步的 c * val 有疑惑,确实暗部区域归0了,但是亮部区域也可能会变得比原本暗,这对吗?最后我的理解是,因为在最后一个pass中,将模糊后的图和原图混合的方式是 “相加”,也就是在原图亮度的基础上进行一个提亮,所以这样处理也能让辉光更加柔和,当然只是我的想法啦~
v2fExtractBright vertExtractBright (appdata_img v){v2fExtractBright o;o.pos = UnityObjectToClipPos(v.vertex);o.uv = v.texcoord;return o;
}fixed luminance(fixed4 col){//计算灰度值return col.r * 0.3 + col.g * 0.59 + col.b * 0.11 ;
} fixed4 fragExtractBright(v2fExtractBright i): SV_TARGET0{fixed4 c = tex2D(_MainTex, i.uv);fixed lum = luminance(c);fixed val = clamp(lum - _LuminaceThreshold, 0.0, 1.0);return c * val;//截取较亮区域
}
(2)高斯模糊 - pass2&3
高斯模糊的本质是对每个顶点,利用他附近的点的颜色进行平均,使得图片变得模糊。做法就不说啦,有点老生常谈,讲几个写代码时需要对算法进行优化的点:
① 优化1:
将高斯模糊分为两个pass实现:将高斯的卷积核(比如是5x5)拆成了一个纵向向量(5x1)与一个横向向量(1x5),也就是先对图片在纵向上模糊一次,再在横向上模糊一次,反过来也成立,这就是高斯核的分离性。
这样能节省性能开销,因为 不拆的时候,假如原图有1000x1000个像素,那么模糊需要的采样数则为1000x1000(总像素数)x5x5(每个卷积核有25个值);而如果拆成两个一维向量的乘积 进行两次模糊,就只需要1000x1000x5x2次采样。
② 优化2:
另外,由于卷积核是对称的,所以在写代码时,仅用3个位置就能表示出一个完整的高斯核。
_MainTex_TexelSize指的是 纹理单个像素的大小
v2fBlur vertBlurVertical (appdata_img v){v2fBlur o;o.pos = UnityObjectToClipPos(v.vertex);half2 uv = v.texcoord;//计算邻域的纹理坐标(纵向5维向量)o.uv[0] = uv;o.uv[1] = uv + float2(0.0, _MainTex_TexelSize.y * 1.0) * _BlurSize;//上移1个单位o.uv[2] = uv - float2(0.0, _MainTex_TexelSize.y * 1.0) * _BlurSize;//下移1个单位o.uv[3] = uv + float2(0.0, _MainTex_TexelSize.y * 2.0) * _BlurSize;//上移2个单位o.uv[4] = uv - float2(0.0, _MainTex_TexelSize.y * 2.0) * _BlurSize;//下移2个单位return o;
}v2fBlur vertBlurHorizontal (appdata_img v){v2fBlur o;o.pos = UnityObjectToClipPos(v.vertex);half2 uv = v.texcoord;//计算邻域的纹理坐标(横向5维向量)o.uv[0] = uv;o.uv[1] = uv + float2(_MainTex_TexelSize.x * 1.0, 0.0) * _BlurSize;//右移1个单位o.uv[2] = uv - float2(_MainTex_TexelSize.x * 1.0, 0.0) * _BlurSize;//左移1个单位o.uv[3] = uv + float2(_MainTex_TexelSize.x * 2.0, 0.0) * _BlurSize;//右移2个单位o.uv[4] = uv - float2(_MainTex_TexelSize.x * 2.0, 0.0) * _BlurSize;//左移2个单位return o;
}fixed4 fragBlur(v2fBlur i): SV_TARGET0{float weight[3] = {0.4026, 0.2442, 0.0545};//高斯核的权重值fixed3 sum;//5个权重值之和sum = tex2D(_MainTex, i.uv[0]).rbg * weight[0];for(int it = 1; it < 3; it++){sum += tex2D(_MainTex, i.uv[it*2-1]).rgb * weight[it];sum += tex2D(_MainTex, i.uv[it*2]).rgb * weight[it];}return fixed4(sum, 1.0);
}
(3)图像混合 - pass4
这就是将原图的颜色直接与模糊图的亮度进行一个叠加啦,用的是加法。
v2fBloom vertBloom (appdata_img v){v2fBloom o;o.pos = UnityObjectToClipPos(v.vertex);o.uv.xy = v.texcoord;//xy存储_MainTex的纹理坐标o.uv.zw = v.texcoord;//zw存储_Bloom的纹理坐标//平台差异兼容,做翻转处理#if UNITY_UV_STARTS_AT_TOPif(_MainTex_TexelSize.y < 0.0)o.uv.w = 1.0 - o.uv.w;#endifreturn o;
}fixed4 fragBloom(v2fBloom i): SV_TARGET0{return tex2D(_MainTex, i.uv.xy) + tex2D(_Bloom, i.uv.zw);
}
3. C#调用流程
① Graphics.Blit(src, buffer0, m, 0): 先将图片降采样,用降采样后的宽高 创建临时的RenderTexture - buffer0,提取亮部存于 buffer0 中;
② Graphics.Blit(buffer0, buffer1, m, 1):之后就可以对 buffer0 进行纵向的高斯模糊,将计算结果存于新创建的buffer1;
③ Graphics.Blit(buffer0, buffer1, m, 2):将buffer1给到buffer0,继续对 buffer0 进行横向的高斯模糊,将计算结果存于buffer1;
④ Graphics.Blit(buffer0, dest, m, 3):将buffer1给到buffer0,对buffer0进行原图叠加,显示到屏幕上。
每次交换缓冲区时,代码为:
RenderTexture.ReleaseTemporary(buffer0);
buffer0 = buffer1;
为什么要先释放再交换?因为 buffer 只是引用变量,后面的 “=” 不是赋值,而是只改变了引用指向,所以如果不先进行释放,原指向数据就会永远保留在内存中,有可能会引起内存泄漏。
public class BloomEffect : MonoBehaviour
{Material m;[Range(0, 4)] public int iterations = 3;//高斯模糊迭代次数[Range(0.2f, 3.0f)] public float blurSpread = 0.6f;//每次迭代模糊范围的增长速度[Range(1, 8)] public int downSample = 2;//将图片像素量减少的降采样系数,能减少需要处理的像素量,提高性能[Range(0.0f, 4.0f)] public float luminaceThreshold = 0.6f;//模糊阈值private void Awake(){m = new Material(Shader.Find("Hidden/Bloom"));}void OnRenderImage(RenderTexture src, RenderTexture dest){Debug.Log("OnRenderImage called");//降采样int rtW = src.width / downSample;int rtH = src.height / downSample;RenderTexture buffer0 = RenderTexture.GetTemporary(rtW, rtH, 0);buffer0.filterMode = FilterMode.Bilinear;//pass1,提取亮区m.SetFloat("_LuminaceThreshold", luminaceThreshold);Graphics.Blit(src, buffer0, m, 0);//pass2&3,高斯for(int i = 0; i < iterations; i++){m.SetFloat("_BlurSize", 1.0f + i * blurSpread);RenderTexture buffer1 = RenderTexture.GetTemporary(rtW, rtH, 0);Graphics.Blit(buffer0, buffer1, m, 1);//纵向RenderTexture.ReleaseTemporary(buffer0);buffer0 = buffer1;buffer1 = RenderTexture.GetTemporary(rtW, rtH, 0);Graphics.Blit(buffer0, buffer1, m, 2);//横向RenderTexture.ReleaseTemporary(buffer0);buffer0 = buffer1;}//pass4,混合m.SetTexture("_Bloom", buffer0);Graphics.Blit(buffer0, dest, m, 3);RenderTexture.ReleaseTemporary(buffer0);Graphics.Blit(src, dest, m);}
}
相关文章:

Unity Shader 学习13:屏幕后处理 - 使用高斯模糊的Bloom辉光效果
目录 一、基本的后处理流程 - 以将画面转化为灰度图为例 1. C#调用shader 2. Shader实现效果 二、Bloom辉光效果 1. 主要变量 2. Shader效果 (1)提取较亮区域 - pass1 (2)高斯模糊 - pass2&3 (3ÿ…...

小迪安全-24天-文件管理,显示上传,黑白名单,访问控制
上节课回顾,token问题 没有更新token值,造成了复用 加上这段代码就好了,就不会复用了 文件管理-文件上传 upload.html文件,找ai生成就行 uoload.php接受文件上传的信息 这里在写个临时文件存储换个地方 因为上面临时文件存在c盘…...
java23种设计模式-建造者模式
建造者模式(Builder Pattern)学习笔记 1. 模式定义 建造者模式是一种创建型设计模式,通过分步构建复杂对象的方式,将对象的构建过程与表示分离。允许使用相同的构建过程创建不同的对象表示。 2. 适用场景 ✅ 需要创建包含多个…...
JMeter 中实现 100 个用户在 3 秒内并发登录
在 JMeter 中实现 100 个用户在 3 秒内并发登录,需要合理配置线程组、定时器和测试逻辑。以下是具体步骤: 1. 创建测试计划 打开 JMeter。右键点击“Test Plan”,选择 Add > Threads (Users) > Thread Group。 : 设置为 100(模拟 100 个用户)。 : 设置为 3...

SOME/IP-SD -- 协议英文原文讲解2
前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 5.1.2.2 S…...

IntelliJ IDEA中Maven配置全指南
一、环境准备与基础配置 1.1 Windows 环境下载并配置 Maven 见此篇博文:环境配置 1.2 IDEA配置步骤 打开设置面板:File → Settings → Build → Build Tools → Maven 关键配置项: Maven home path E:\apache-maven-3.9.9 (…...

第438场周赛:判断操作后字符串中的数字是否相等、提取至多 K 个元素的最大总和、判断操作后字符串中的数字是否相等 Ⅱ、正方形上的点之间的最大距离
Q1、判断操作后字符串中的数字是否相等 1、题目描述 给你一个由数字组成的字符串 s 。重复执行以下操作,直到字符串恰好包含 两个 数字: 从第一个数字开始,对于 s 中的每一对连续数字,计算这两个数字的和 模 10。用计算得到的新…...

20-R 绘图 - 饼图
R 绘图 - 饼图 R 语言提供来大量的库来实现绘图功能。 饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。 R 语言使用 pie() 函数来实现饼图,语法格式如下: pie(x, l…...

【LLM】R1复现项目(SimpleRL、OpenR1、LogitRL、TinyZero)持续更新
note (1)未来的工作需亟待解决: 支持大规模 RL 训练(PPO、GRPO 等)的开源基础框架用于稳定训练的 GRPO 训练超参的自动化调优RL 训练数据的配比(难度、领域、任务等)基于 Instruct 模型训练 R…...
Linux 内核网络设备驱动编程:私有协议支持
一、struct net_device的通用性与私有协议的使用 struct net_device是Linux内核中用于描述网络设备的核心数据结构,它不仅限于TCP/IP协议,还可以用于支持各种类型的网络协议,包括私有协议。其原因如下: 协议无关性:struct net_device的设计是通用的,它本身并不依赖于任何…...

20241130 RocketMQ本机安装与SpringBoot整合
目录 一、RocketMQ简介 ???1.1、核心概念 ???1.2、应用场景 ???1.3、架构设计 2、RocketMQ Server安装 3、RocketMQ可视化控制台安装与使用 4、SpringBoot整合RocketMQ实现消息发送和接收? ? ? ? ? 4.1、添加maven依赖 ???4.2、yaml配置 ???4.3、…...
FFmpeg进化论:从av_register_all手动注册到编译期自动加载的技术跃迁
介绍 音视频开发都知道 FFmpeg,因此对 av_register_all 这个 API 都很熟悉,但ffmpeg 4.0 版本开始就已经废弃了,是旧版本中用于全局初始化的重要接口。 基本功能 核心作用:av_register_all() 用于注册所有封装器(muxer)、解封装器(demuxer)和协议处理器(protocol),…...

Http升级为Https - 开发/测试服环境
1.应用场景 主要用于开发/测试服环境将http升级为https, 防止前端web(浏览器)出现Mixed Content报错; 2.学习/操作 1.文档阅读 deepseek 问答; 2.整理输出 报错信息: Mixed Content: The page at <URL> was loaded over HTTPS, but requested an insecure XMLHttpRequ…...

C语言预编译
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文一、预处理的作用与流程…...
算法刷题-字符串-151.反转单词
题目 给一串字符串,里面有若干单词,以空格界定单词的结束,翻转其中的单词 输入:s " hello world " 输出:“world hello” 需要注意的是,给定的字符串可能存在头空格、尾空格以及中间的空格数量…...
单片机裸机编程:状态机与其他高效编程框架
在单片机裸机编程中,状态机是一种非常强大的工具,能够有效管理复杂的逻辑和任务切换。除了状态机,还有其他几种编程模式可以在不使用 RTOS 的情况下实现高效的程序设计。以下是一些常见的方法: 1. 状态机编程 状态机通过定义系统…...

图表控件Aspose.Diagram入门教程:使用 Python 将 VSDX 转换为 PDF
将VSDX转换为PDF可让用户轻松共享图表。PDF 文件保留原始文档的布局和设计。它们广泛用于演示文稿、报告和文档。在这篇博文中,我们将探讨如何在 Python 中将 VSDX 转换为 PDF。 本文涵盖以下主题: Python VSDX 到 PDF 转换器库使用 Python 将 VSDX 转…...

DPVS-1:编译安装DPVS (ubuntu22.04)
操作系统 rootubuntu22:~# lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.3 LTS Release: 22.04 Codename: jammy rootubuntu22:~# 前置软件准备 apt install git apt install meson apt install gcc ap…...

即将发布书籍 - Yocto项目实战教程:高效定制嵌入式Linux系统
以下这本书《Yocto项目实战教程:高效定制嵌入式Linux系统》即将发布,现在请哪位大佬出山写一个序或者推荐,有兴趣的大佬,请联系我! Git仓库地址: https://github.com/jerrysundev/Yocto-Project-Book.git …...
Git 常用指令及其说明
配置相关 # 配置全局用户名 git config --global user.name "YourUsername"# 配置全局邮箱 git config --global user.email "your.emailexample.com"说明:这两条命令用于设置 Git 全局的用户名和邮箱,在提交代码时,这些…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...