STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数
STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数
STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例,只用到USB,USART1极少的接口,体现FreeRTOS的各种操作过程。
操作教程(十三)配置FreeRTOS及相关环境,采用task api 任务访问函数获取任务状态参数,通过USB虚拟串口接收指令,根据指令执行相关的任务访问函数,并通过USB虚拟串口返回结果。常用的task api有如下一些:
FreeRTOS的教程较多,推荐参考正点原子所出的《STM32F407 FreeRTOS开发手册》了解相关知识。
STM32CUBEIDE工程配置
选择TIM1(也可以是其它TIM)作为FreeRTOS操作系统占用的时钟源:
配置时钟树包括USB的48MHz时钟:
配置PC13为低电平点灯的管脚:
配置USB串口:
配置UART1串口(但本例中不用到UART1):
FreeRTOS配置
保存并生成基础工程代码:
在生成代码的这个部分可以看到FreeRTOS代码部分:
任务实现
基于前述的配置,main.c代码里会加载Free-RTOS的配置,并启动几个任务的调度,当然,此时的任务都是什么也不干。实现LED闪灯,就在LED闪灯任务里加入代码即可:
void StartTask_TASK_LED_FLASH(void *argument)
{/* USER CODE BEGIN StartTask_TASK_LED_FLASH *//* Infinite loop */for(;;){osDelay(1000);HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);}/* USER CODE END StartTask_TASK_LED_FLASH */
}
也就实现了LED闪灯功能,其中osDelay(1000);实现1秒时间的操作系统调度延时,也就是1秒执行一次LED灯的亮灭。osDelay(1);是最小的调度延时,为1毫秒。要实现更小的延时,则可以用微秒延时函数实现,参考《STM32 HAL us delay(微秒延时)的指令延时实现方式及优化》
在USB虚拟串口的接收数据回调函数里,接收指令信息:
static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{/* USER CODE BEGIN 6 */extern uint8_t USB_VCOM_BUFF[1024];extern uint32_t USB_VCOM_INDEX;extern osSemaphoreId_t USB_VCOM_BinarySem01Handle;extern BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;memcpy(USB_VCOM_BUFF+USB_VCOM_INDEX, Buf, *Len);xSemaphoreGiveFromISR(USB_VCOM_BinarySem01Handle, &USB_VCOM_pxHigherPriorityTaskWaken);USB_VCOM_INDEX += *Len;USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);USBD_CDC_ReceivePacket(&hUsbDeviceFS);return (USBD_OK);/* USER CODE END 6 */
}
在main.c的USB任务里,根据指令信息进行任务访问函数的调用和反馈:
void StartTask_TASK_USB_VCOM(void *argument)
{/* USER CODE BEGIN StartTask_TASK_USB_VCOM */BaseType_t err_stu = pdFALSE;UBaseType_t result = 0;/* Infinite loop */for(;;){osDelay(10);USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphoreerr_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);if(err_stu==pdTRUE){if(USB_VCOM_BUFF[0]==0x01) //Get task priority{result = uxTaskPriorityGet(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1{result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;vTaskPrioritySet(TASK_LED_FLASHHandle, result);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is set to %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);result = uxTaskGetSystemState(SB, 20, &rt);char * TB = pvPortMalloc(1024);sprintf(TB, "Task number got is %d\r\n", result);usbprintstring(TB);for(uint32_t i=0; i<result;i++){if(SB[i].xHandle == TASK_LED_FLASHHandle){sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);usbprintstring(TB);break;}}vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag{TaskHookFunction_t TV = 0;char * TB = pvPortMalloc(1024);BaseType_t cbf( void * param ){return 100;}vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );usbprintstring("LED task's TAG is set to digital\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);usbprintstring(TB);vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );usbprintstring("LED task's TAG is set to function\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);usbprintstring(TB);BaseType_t (*fp)(void);fp = TV;BaseType_t rv = fp();sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x06) //Get current task handle{TaskHandle_t th = xTaskGetCurrentTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name{TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");char * TB = pvPortMalloc(1024);sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle{TaskHandle_t th = xTaskGetIdleTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark{UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0A) //Get task running state{eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle{char * tn = pcTaskGetName(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's name is %s\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0C) //Get tick count{TickType_t tc = xTaskGetTickCount();char * TB = pvPortMalloc(1024);sprintf(TB, "Tick count is %ld\r\n", tc);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state{BaseType_t ts = xTaskGetSchedulerState();char * TB = pvPortMalloc(1024);sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0E) //Get task number{UBaseType_t tn = uxTaskGetNumberOfTasks();char * TB = pvPortMalloc(1024);sprintf(TB, "Task number is %ld\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information{char * TB = pvPortMalloc(1024);vTaskList(TB);usbprintstring("Name State Priority Stack Number\r\n");usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read{char * TB = pvPortMalloc(1024);vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);usbprintstring(TB);vPortFree(TB);}USB_VCOM_INDEX = 0;}}/* USER CODE END StartTask_TASK_USB_VCOM */
}
main.c文件的完整代码为:
/* USER CODE BEGIN Header */
/********************************************************************************* @file : main.c* @brief : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Example 2: LED flash + USB VCOM with semaphore binary for task api enquiry
//Written by Pegasus Yu
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usb_device.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "semphr.h"
#include "task.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase = 7.63238716; //For STM32F401RCT6 working in 84MHz main clockvoid PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {.name = "defaultTask",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for TASK_LED_FLASH */
osThreadId_t TASK_LED_FLASHHandle;
const osThreadAttr_t TASK_LED_FLASH_attributes = {.name = "TASK_LED_FLASH",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_UART1 */
osThreadId_t TASK_UART1Handle;
const osThreadAttr_t TASK_UART1_attributes = {.name = "TASK_UART1",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_USB_VCOM */
osThreadId_t TASK_USB_VCOMHandle;
const osThreadAttr_t TASK_USB_VCOM_attributes = {.name = "TASK_USB_VCOM",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for USB_VCOM_BinarySem01 */
osSemaphoreId_t USB_VCOM_BinarySem01Handle;
const osSemaphoreAttr_t USB_VCOM_BinarySem01_attributes = {.name = "USB_VCOM_BinarySem01"
};
/* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
void StartDefaultTask(void *argument);
void StartTask_TASK_LED_FLASH(void *argument);
void StartTask_TASK_UART1(void *argument);
void StartTask_TASK_USB_VCOM(void *argument);/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
void usbprintstring(char * data)
{if(CDC_Transmit_FS((uint8_t *)data, strlen(data))==USBD_BUSY){PY_Delay_us_t(1000000);CDC_Transmit_FS((uint8_t *)data, strlen(data));}
}void usbprintarray(uint8_t * data, uint16_t len)
{if(CDC_Transmit_FS(data, len)==USBD_BUSY){PY_Delay_us_t(1000000);CDC_Transmit_FS(data, len);}
}uint8_t USB_VCOM_BUFF[1024];
uint32_t USB_VCOM_INDEX = 0;BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;
TickType_t USB_VCOM_xBlockTime = 0;BaseType_t testfun(void)
{return 0x55;
}
/* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 *//* USER CODE END 2 *//* Init scheduler */osKernelInitialize();/* USER CODE BEGIN RTOS_MUTEX *//* add mutexes, ... *//* USER CODE END RTOS_MUTEX *//* Create the semaphores(s) *//* creation of USB_VCOM_BinarySem01 */USB_VCOM_BinarySem01Handle = osSemaphoreNew(1, 0, &USB_VCOM_BinarySem01_attributes);/* USER CODE BEGIN RTOS_SEMAPHORES *//* add semaphores, ... *//* USER CODE END RTOS_SEMAPHORES *//* USER CODE BEGIN RTOS_TIMERS *//* start timers, add new ones, ... *//* USER CODE END RTOS_TIMERS *//* USER CODE BEGIN RTOS_QUEUES *//* add queues, ... *//* USER CODE END RTOS_QUEUES *//* Create the thread(s) *//* creation of defaultTask */defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);/* creation of TASK_LED_FLASH */TASK_LED_FLASHHandle = osThreadNew(StartTask_TASK_LED_FLASH, NULL, &TASK_LED_FLASH_attributes);/* creation of TASK_UART1 */TASK_UART1Handle = osThreadNew(StartTask_TASK_UART1, NULL, &TASK_UART1_attributes);/* creation of TASK_USB_VCOM */TASK_USB_VCOMHandle = osThreadNew(StartTask_TASK_USB_VCOM, NULL, &TASK_USB_VCOM_attributes);/* USER CODE BEGIN RTOS_THREADS *//* add threads, ... *//* USER CODE END RTOS_THREADS *//* USER CODE BEGIN RTOS_EVENTS *//* add events, ... *//* USER CODE END RTOS_EVENTS *//* Start scheduler */osKernelStart();/* We should never get here as control is now taken by the scheduler *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief USART1 Initialization Function* @param None* @retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** Enable DMA controller clock*/
static void MX_DMA_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA2_CLK_ENABLE();/* DMA interrupt init *//* DMA2_Stream2_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 5, 0);HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOC_CLK_ENABLE();__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);/*Configure GPIO pin : LED_Pin */GPIO_InitStruct.Pin = LED_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//* USER CODE BEGIN Header_StartDefaultTask */
/*** @brief Function implementing the defaultTask thread.* @param argument: Not used* @retval None*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{/* init code for USB_DEVICE */MX_USB_DEVICE_Init();/* USER CODE BEGIN 5 *//* Infinite loop */for(;;){osDelay(1);}/* USER CODE END 5 */
}/* USER CODE BEGIN Header_StartTask_TASK_LED_FLASH */
/**
* @brief Function implementing the TASK_LED_FLASH thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_LED_FLASH */
void StartTask_TASK_LED_FLASH(void *argument)
{/* USER CODE BEGIN StartTask_TASK_LED_FLASH *//* Infinite loop */for(;;){osDelay(1000);HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);}/* USER CODE END StartTask_TASK_LED_FLASH */
}/* USER CODE BEGIN Header_StartTask_TASK_UART1 */
/**
* @brief Function implementing the TASK_UART1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_UART1 */
void StartTask_TASK_UART1(void *argument)
{/* USER CODE BEGIN StartTask_TASK_UART1 *//* Infinite loop */for(;;){osDelay(1);}/* USER CODE END StartTask_TASK_UART1 */
}/* USER CODE BEGIN Header_StartTask_TASK_USB_VCOM */
/**
* @brief Function implementing the TASK_USB_VCOM thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_USB_VCOM */
void StartTask_TASK_USB_VCOM(void *argument)
{/* USER CODE BEGIN StartTask_TASK_USB_VCOM */BaseType_t err_stu = pdFALSE;UBaseType_t result = 0;/* Infinite loop */for(;;){osDelay(10);USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphoreerr_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);if(err_stu==pdTRUE){if(USB_VCOM_BUFF[0]==0x01) //Get task priority{result = uxTaskPriorityGet(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1{result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;vTaskPrioritySet(TASK_LED_FLASHHandle, result);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is set to %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);result = uxTaskGetSystemState(SB, 20, &rt);char * TB = pvPortMalloc(1024);sprintf(TB, "Task number got is %d\r\n", result);usbprintstring(TB);for(uint32_t i=0; i<result;i++){if(SB[i].xHandle == TASK_LED_FLASHHandle){sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);usbprintstring(TB);break;}}vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag{TaskHookFunction_t TV = 0;char * TB = pvPortMalloc(1024);BaseType_t cbf( void * param ){return 100;}vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );usbprintstring("LED task's TAG is set to digital\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);usbprintstring(TB);vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );usbprintstring("LED task's TAG is set to function\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);usbprintstring(TB);BaseType_t (*fp)(void);fp = TV;BaseType_t rv = fp();sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x06) //Get current task handle{TaskHandle_t th = xTaskGetCurrentTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name{TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");char * TB = pvPortMalloc(1024);sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle{TaskHandle_t th = xTaskGetIdleTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark{UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0A) //Get task running state{eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle{char * tn = pcTaskGetName(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's name is %s\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0C) //Get tick count{TickType_t tc = xTaskGetTickCount();char * TB = pvPortMalloc(1024);sprintf(TB, "Tick count is %ld\r\n", tc);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state{BaseType_t ts = xTaskGetSchedulerState();char * TB = pvPortMalloc(1024);sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0E) //Get task number{UBaseType_t tn = uxTaskGetNumberOfTasks();char * TB = pvPortMalloc(1024);sprintf(TB, "Task number is %ld\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information{char * TB = pvPortMalloc(1024);vTaskList(TB);usbprintstring("Name State Priority Stack Number\r\n");usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read{char * TB = pvPortMalloc(1024);vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);usbprintstring(TB);vPortFree(TB);}USB_VCOM_INDEX = 0;}}/* USER CODE END StartTask_TASK_USB_VCOM */
}/*** @brief Period elapsed callback in non blocking mode* @note This function is called when TIM1 interrupt took place, inside* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment* a global variable "uwTick" used as application time base.* @param htim : TIM handle* @retval None*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{/* USER CODE BEGIN Callback 0 *//* USER CODE END Callback 0 */if (htim->Instance == TIM1) {HAL_IncTick();}/* USER CODE BEGIN Callback 1 *//* USER CODE END Callback 1 */
}/*** @brief This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
手动调整的代码
有几处的配置调整,需要手动进行:
例程下载
STM32 STM32CUBEIDE FreeRTOS操作教程(十三):stask api 任务访问函数 例程
例程测试
例程测试效果如下:
–End–
相关文章:

STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数
STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板…...

Jmeter+Jenkins接口压力测试持续集成
项目介绍 接口功能测试应用: http://www.weather.com.cn/data/cityinfo/<city_code>.html 测试功能:获取对应城市的天气预报 请求方法:Get 压测脚本开发工具:jmeter 源码脚本位置: https://github.com/shife…...

深入浅出ES6:现代JavaScript的基石
ES6(ECMAScript 2015)是JavaScript语言的一次重大更新,引入了许多新特性,使JavaScript更加强大、优雅和易于维护。这些特性已经成为现代JavaScript开发的基石,掌握它们对于任何JavaScript开发者都至关重要。本文将深入…...
实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能
下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行: 步骤1&#x…...

潜水泵,高效排水,守护城市与农田|深圳鼎跃
洪水是常见的自然灾害,在春夏季节的我国降水多为丰富,容易造成城市内部的洪涝灾害。特别是低洼地区的积水,不仅容易造成城市交通的出行不便,还存在潜在的隐患,严重影响了人们正常生活。 潜水泵作为一种高效、可靠的排水…...

易基因:RNA甲基化修饰和R-loop的交叉调控:从分子机制到临床意义|深度综述
大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 R-loop(RNA-DNA杂合结构)是转录调控、DNA复制和修复等关键细胞过程的重要组成部分。但R-loop异常积累可能会破坏基因组完整性,从而导致多种疾病的发生…...

115 道 MySQL 面试题,从简单到深入!
1. 什么是数据库事务? 数据库事务是一个作为单个逻辑工作单元执行的一系列操作。事务具有ACID属性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性…...

一周学会Flask3 Python Web开发-flask3上下文全局变量session,g和current_app
锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili flask3提供了session,g和current_app上下文全局变量来方便我们操作访问数据。 以下是一个表格,用于比较Flask中的…...
MFC学习笔记-1
一、编辑框和按钮 //.h文件private:CString str;//给窗口类加了一个变量(定义一个成员变量),关联到IDC_EDIT1中(要在实现中关联,源文件文件夹中)CString str2;//接收button2,和IDC_EDIT2绑定 p…...

Linux搜索查找类指令
1、find指令 基本语法:find [搜索范围] [选项] 功能:将从指定目录向下递归地遍历其各个子目录,将满足条件的文件或目录显示在终端。 常用选项: 操作 命令示例 说明 查找指定路径下的所有文件 find /path/to/dir 查找指定目…...

江协科技/江科大-51单片机入门教程——P[1-1] 课程简介P[1-2] 开发工具介绍及软件安装
本教程也力求在玩好单片机的同时了解一些计算机的基本概念,了解电脑的一些基本操作,了解电路及其元器件的基本理论,为我们学习更高级的单片机,入门IT和信息技术行业,打下一定的基础。 目录 1.课程简介 2.开发工具及…...

监听load和hashchange事件
监听load和hashchange事件 上篇文章中,我们已经将菜谱的数据给拿到,并且已经可以渲染到页面上,本篇我们将为程序添加一些事件; 注:本项目来自于Jonas Schmedtmann创建,文章仅仅作为学习作用! 菜…...
深度剖析Seata源码:解锁分布式事务处理的核心逻辑
文章目录 写在文章开头如何使用源码(配置转掉)基于AT模式详解Seata全链路流程Seata服务端启动本地服务如何基于GlobalTransaction注解开启事务客户端如何开启分布式事务RM和TC如何协调处理分支事务RM生成回滚日志事务全局提交与回滚小结参考写在文章开头 在当今分布式系统日益…...

在 Ansys Mechanical 中解决干涉拟合
有意和无意的过盈配合在工程设计和有限元分析 (FEA) 中很常见。当两个组件重叠或接触时,就会发生这种情况,从而产生应力和变形,必须仔细分析以确保功能正常。有意干涉,例如轴和轴承之间的压配合或用于固定金…...
JMeter性能问题
性能测试中TPS上不去的几种原因 性能测试中TPS上不去的几种原因_tps一直上不去-CSDN博客 网络带宽 连接池 垃圾回收机制 压测脚本 通信连接机制 数据库配置 硬件资源 压测机 业务逻辑 系统架构 CPU过高什么原因 性能问题分析-CPU偏高 - 西瓜汁拌面 - 博客园 US C…...

美国国防部(DoD)SysML v2迁移指南项目
DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 分享一篇SysML v1向SysML v2迁移的资料。 下载地址:https://ndia.dtic.mil/wp-content/uploads/2023/systems/Thurs_1560710_Stirk.pdf 核心内容用DeepSeek整理如下&#…...

JavaWeb-GenericServlet源码分析(适配器/模板方法)
文章目录 类直接实现Servlet接口的弊端Servlet接口的方法适配器设计模式 适配器对象的改造关于init方法的ServletConfig对象来源使用模板方法设计模式改造init方法 GenericServlet内置抽象类ServletConfig接口ServletConfig接口简介测试再谈GenericServlet抽象类 类直接实现Ser…...
微机原理与汇编语言试题四
一、单项选择 1.(单选题)()指向的内存单元的值被CPU做为指令执行。 A. DS:SI B. CS:IP C. SS:SP D. ES:DI 正确答案:B 2.(单选题)当RESET信号进入高电平状态时,将使8086的()寄存器初始化为0FFFFH A. SS B. DS C. ES D. CS 正确答案:D 3.(单选题)堆栈段寄存器是( …...

[java基础-JVM篇]1_JVM自动内存管理
JVM内存管理涉及但不限于类加载、对象分配、垃圾回收等,本篇主要记录运行时数据区域与对象相关内容。 内容主要来源《深入理解Java虚拟机:JVM高级特性与最佳实践》与官方文档,理解与表述错漏之处恳请各位大佬指正。 目录 运行时数据区域 栈 栈…...

安宝特科技 | Vuzix Z100智能眼镜+AugmentOS:重新定义AI可穿戴设备的未来——从操作系统到硬件生态,如何掀起无感智能革命?
一、AugmentOS:AI可穿戴的“操作系统革命” 2025年2月3日,Vuzix与AI人机交互团队Mentra联合推出的AugmentOS,被业内视为智能眼镜领域的“iOS时刻”。这款全球首个专为智能眼镜设计的通用操作系统,通过三大突破重新定义了AI可穿戴…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...