STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数
STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数
STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例,只用到USB,USART1极少的接口,体现FreeRTOS的各种操作过程。

操作教程(十三)配置FreeRTOS及相关环境,采用task api 任务访问函数获取任务状态参数,通过USB虚拟串口接收指令,根据指令执行相关的任务访问函数,并通过USB虚拟串口返回结果。常用的task api有如下一些:

FreeRTOS的教程较多,推荐参考正点原子所出的《STM32F407 FreeRTOS开发手册》了解相关知识。


STM32CUBEIDE工程配置
选择TIM1(也可以是其它TIM)作为FreeRTOS操作系统占用的时钟源:


配置时钟树包括USB的48MHz时钟:

配置PC13为低电平点灯的管脚:

配置USB串口:





配置UART1串口(但本例中不用到UART1):




FreeRTOS配置










保存并生成基础工程代码:

在生成代码的这个部分可以看到FreeRTOS代码部分:

任务实现
基于前述的配置,main.c代码里会加载Free-RTOS的配置,并启动几个任务的调度,当然,此时的任务都是什么也不干。实现LED闪灯,就在LED闪灯任务里加入代码即可:
void StartTask_TASK_LED_FLASH(void *argument)
{/* USER CODE BEGIN StartTask_TASK_LED_FLASH *//* Infinite loop */for(;;){osDelay(1000);HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);}/* USER CODE END StartTask_TASK_LED_FLASH */
}
也就实现了LED闪灯功能,其中osDelay(1000);实现1秒时间的操作系统调度延时,也就是1秒执行一次LED灯的亮灭。osDelay(1);是最小的调度延时,为1毫秒。要实现更小的延时,则可以用微秒延时函数实现,参考《STM32 HAL us delay(微秒延时)的指令延时实现方式及优化》
在USB虚拟串口的接收数据回调函数里,接收指令信息:

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{/* USER CODE BEGIN 6 */extern uint8_t USB_VCOM_BUFF[1024];extern uint32_t USB_VCOM_INDEX;extern osSemaphoreId_t USB_VCOM_BinarySem01Handle;extern BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;memcpy(USB_VCOM_BUFF+USB_VCOM_INDEX, Buf, *Len);xSemaphoreGiveFromISR(USB_VCOM_BinarySem01Handle, &USB_VCOM_pxHigherPriorityTaskWaken);USB_VCOM_INDEX += *Len;USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);USBD_CDC_ReceivePacket(&hUsbDeviceFS);return (USBD_OK);/* USER CODE END 6 */
}
在main.c的USB任务里,根据指令信息进行任务访问函数的调用和反馈:
void StartTask_TASK_USB_VCOM(void *argument)
{/* USER CODE BEGIN StartTask_TASK_USB_VCOM */BaseType_t err_stu = pdFALSE;UBaseType_t result = 0;/* Infinite loop */for(;;){osDelay(10);USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphoreerr_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);if(err_stu==pdTRUE){if(USB_VCOM_BUFF[0]==0x01) //Get task priority{result = uxTaskPriorityGet(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1{result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;vTaskPrioritySet(TASK_LED_FLASHHandle, result);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is set to %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);result = uxTaskGetSystemState(SB, 20, &rt);char * TB = pvPortMalloc(1024);sprintf(TB, "Task number got is %d\r\n", result);usbprintstring(TB);for(uint32_t i=0; i<result;i++){if(SB[i].xHandle == TASK_LED_FLASHHandle){sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);usbprintstring(TB);break;}}vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag{TaskHookFunction_t TV = 0;char * TB = pvPortMalloc(1024);BaseType_t cbf( void * param ){return 100;}vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );usbprintstring("LED task's TAG is set to digital\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);usbprintstring(TB);vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );usbprintstring("LED task's TAG is set to function\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);usbprintstring(TB);BaseType_t (*fp)(void);fp = TV;BaseType_t rv = fp();sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x06) //Get current task handle{TaskHandle_t th = xTaskGetCurrentTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name{TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");char * TB = pvPortMalloc(1024);sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle{TaskHandle_t th = xTaskGetIdleTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark{UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0A) //Get task running state{eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle{char * tn = pcTaskGetName(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's name is %s\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0C) //Get tick count{TickType_t tc = xTaskGetTickCount();char * TB = pvPortMalloc(1024);sprintf(TB, "Tick count is %ld\r\n", tc);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state{BaseType_t ts = xTaskGetSchedulerState();char * TB = pvPortMalloc(1024);sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0E) //Get task number{UBaseType_t tn = uxTaskGetNumberOfTasks();char * TB = pvPortMalloc(1024);sprintf(TB, "Task number is %ld\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information{char * TB = pvPortMalloc(1024);vTaskList(TB);usbprintstring("Name State Priority Stack Number\r\n");usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read{char * TB = pvPortMalloc(1024);vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);usbprintstring(TB);vPortFree(TB);}USB_VCOM_INDEX = 0;}}/* USER CODE END StartTask_TASK_USB_VCOM */
}
main.c文件的完整代码为:
/* USER CODE BEGIN Header */
/********************************************************************************* @file : main.c* @brief : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Example 2: LED flash + USB VCOM with semaphore binary for task api enquiry
//Written by Pegasus Yu
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usb_device.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "semphr.h"
#include "task.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase = 7.63238716; //For STM32F401RCT6 working in 84MHz main clockvoid PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {.name = "defaultTask",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for TASK_LED_FLASH */
osThreadId_t TASK_LED_FLASHHandle;
const osThreadAttr_t TASK_LED_FLASH_attributes = {.name = "TASK_LED_FLASH",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_UART1 */
osThreadId_t TASK_UART1Handle;
const osThreadAttr_t TASK_UART1_attributes = {.name = "TASK_UART1",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_USB_VCOM */
osThreadId_t TASK_USB_VCOMHandle;
const osThreadAttr_t TASK_USB_VCOM_attributes = {.name = "TASK_USB_VCOM",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for USB_VCOM_BinarySem01 */
osSemaphoreId_t USB_VCOM_BinarySem01Handle;
const osSemaphoreAttr_t USB_VCOM_BinarySem01_attributes = {.name = "USB_VCOM_BinarySem01"
};
/* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
void StartDefaultTask(void *argument);
void StartTask_TASK_LED_FLASH(void *argument);
void StartTask_TASK_UART1(void *argument);
void StartTask_TASK_USB_VCOM(void *argument);/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
void usbprintstring(char * data)
{if(CDC_Transmit_FS((uint8_t *)data, strlen(data))==USBD_BUSY){PY_Delay_us_t(1000000);CDC_Transmit_FS((uint8_t *)data, strlen(data));}
}void usbprintarray(uint8_t * data, uint16_t len)
{if(CDC_Transmit_FS(data, len)==USBD_BUSY){PY_Delay_us_t(1000000);CDC_Transmit_FS(data, len);}
}uint8_t USB_VCOM_BUFF[1024];
uint32_t USB_VCOM_INDEX = 0;BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;
TickType_t USB_VCOM_xBlockTime = 0;BaseType_t testfun(void)
{return 0x55;
}
/* USER CODE END 0 *//*** @brief The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 *//* USER CODE END 2 *//* Init scheduler */osKernelInitialize();/* USER CODE BEGIN RTOS_MUTEX *//* add mutexes, ... *//* USER CODE END RTOS_MUTEX *//* Create the semaphores(s) *//* creation of USB_VCOM_BinarySem01 */USB_VCOM_BinarySem01Handle = osSemaphoreNew(1, 0, &USB_VCOM_BinarySem01_attributes);/* USER CODE BEGIN RTOS_SEMAPHORES *//* add semaphores, ... *//* USER CODE END RTOS_SEMAPHORES *//* USER CODE BEGIN RTOS_TIMERS *//* start timers, add new ones, ... *//* USER CODE END RTOS_TIMERS *//* USER CODE BEGIN RTOS_QUEUES *//* add queues, ... *//* USER CODE END RTOS_QUEUES *//* Create the thread(s) *//* creation of defaultTask */defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);/* creation of TASK_LED_FLASH */TASK_LED_FLASHHandle = osThreadNew(StartTask_TASK_LED_FLASH, NULL, &TASK_LED_FLASH_attributes);/* creation of TASK_UART1 */TASK_UART1Handle = osThreadNew(StartTask_TASK_UART1, NULL, &TASK_UART1_attributes);/* creation of TASK_USB_VCOM */TASK_USB_VCOMHandle = osThreadNew(StartTask_TASK_USB_VCOM, NULL, &TASK_USB_VCOM_attributes);/* USER CODE BEGIN RTOS_THREADS *//* add threads, ... *//* USER CODE END RTOS_THREADS *//* USER CODE BEGIN RTOS_EVENTS *//* add events, ... *//* USER CODE END RTOS_EVENTS *//* Start scheduler */osKernelStart();/* We should never get here as control is now taken by the scheduler *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief USART1 Initialization Function* @param None* @retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** Enable DMA controller clock*/
static void MX_DMA_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA2_CLK_ENABLE();/* DMA interrupt init *//* DMA2_Stream2_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 5, 0);HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOC_CLK_ENABLE();__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);/*Configure GPIO pin : LED_Pin */GPIO_InitStruct.Pin = LED_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//* USER CODE BEGIN Header_StartDefaultTask */
/*** @brief Function implementing the defaultTask thread.* @param argument: Not used* @retval None*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{/* init code for USB_DEVICE */MX_USB_DEVICE_Init();/* USER CODE BEGIN 5 *//* Infinite loop */for(;;){osDelay(1);}/* USER CODE END 5 */
}/* USER CODE BEGIN Header_StartTask_TASK_LED_FLASH */
/**
* @brief Function implementing the TASK_LED_FLASH thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_LED_FLASH */
void StartTask_TASK_LED_FLASH(void *argument)
{/* USER CODE BEGIN StartTask_TASK_LED_FLASH *//* Infinite loop */for(;;){osDelay(1000);HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);}/* USER CODE END StartTask_TASK_LED_FLASH */
}/* USER CODE BEGIN Header_StartTask_TASK_UART1 */
/**
* @brief Function implementing the TASK_UART1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_UART1 */
void StartTask_TASK_UART1(void *argument)
{/* USER CODE BEGIN StartTask_TASK_UART1 *//* Infinite loop */for(;;){osDelay(1);}/* USER CODE END StartTask_TASK_UART1 */
}/* USER CODE BEGIN Header_StartTask_TASK_USB_VCOM */
/**
* @brief Function implementing the TASK_USB_VCOM thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_USB_VCOM */
void StartTask_TASK_USB_VCOM(void *argument)
{/* USER CODE BEGIN StartTask_TASK_USB_VCOM */BaseType_t err_stu = pdFALSE;UBaseType_t result = 0;/* Infinite loop */for(;;){osDelay(10);USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphoreerr_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);if(err_stu==pdTRUE){if(USB_VCOM_BUFF[0]==0x01) //Get task priority{result = uxTaskPriorityGet(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1{result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;vTaskPrioritySet(TASK_LED_FLASHHandle, result);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is set to %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);result = uxTaskGetSystemState(SB, 20, &rt);char * TB = pvPortMalloc(1024);sprintf(TB, "Task number got is %d\r\n", result);usbprintstring(TB);for(uint32_t i=0; i<result;i++){if(SB[i].xHandle == TASK_LED_FLASHHandle){sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);usbprintstring(TB);break;}}vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag{TaskHookFunction_t TV = 0;char * TB = pvPortMalloc(1024);BaseType_t cbf( void * param ){return 100;}vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );usbprintstring("LED task's TAG is set to digital\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);usbprintstring(TB);vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );usbprintstring("LED task's TAG is set to function\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);usbprintstring(TB);BaseType_t (*fp)(void);fp = TV;BaseType_t rv = fp();sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x06) //Get current task handle{TaskHandle_t th = xTaskGetCurrentTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name{TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");char * TB = pvPortMalloc(1024);sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle{TaskHandle_t th = xTaskGetIdleTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark{UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0A) //Get task running state{eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle{char * tn = pcTaskGetName(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's name is %s\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0C) //Get tick count{TickType_t tc = xTaskGetTickCount();char * TB = pvPortMalloc(1024);sprintf(TB, "Tick count is %ld\r\n", tc);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state{BaseType_t ts = xTaskGetSchedulerState();char * TB = pvPortMalloc(1024);sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0E) //Get task number{UBaseType_t tn = uxTaskGetNumberOfTasks();char * TB = pvPortMalloc(1024);sprintf(TB, "Task number is %ld\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information{char * TB = pvPortMalloc(1024);vTaskList(TB);usbprintstring("Name State Priority Stack Number\r\n");usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read{char * TB = pvPortMalloc(1024);vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);usbprintstring(TB);vPortFree(TB);}USB_VCOM_INDEX = 0;}}/* USER CODE END StartTask_TASK_USB_VCOM */
}/*** @brief Period elapsed callback in non blocking mode* @note This function is called when TIM1 interrupt took place, inside* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment* a global variable "uwTick" used as application time base.* @param htim : TIM handle* @retval None*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{/* USER CODE BEGIN Callback 0 *//* USER CODE END Callback 0 */if (htim->Instance == TIM1) {HAL_IncTick();}/* USER CODE BEGIN Callback 1 *//* USER CODE END Callback 1 */
}/*** @brief This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** @brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* @param file: pointer to the source file name* @param line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
手动调整的代码
有几处的配置调整,需要手动进行:




例程下载
STM32 STM32CUBEIDE FreeRTOS操作教程(十三):stask api 任务访问函数 例程
例程测试
例程测试效果如下:


















–End–
相关文章:
STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数
STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板…...
Jmeter+Jenkins接口压力测试持续集成
项目介绍 接口功能测试应用: http://www.weather.com.cn/data/cityinfo/<city_code>.html 测试功能:获取对应城市的天气预报 请求方法:Get 压测脚本开发工具:jmeter 源码脚本位置: https://github.com/shife…...
深入浅出ES6:现代JavaScript的基石
ES6(ECMAScript 2015)是JavaScript语言的一次重大更新,引入了许多新特性,使JavaScript更加强大、优雅和易于维护。这些特性已经成为现代JavaScript开发的基石,掌握它们对于任何JavaScript开发者都至关重要。本文将深入…...
实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能
下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行: 步骤1&#x…...
潜水泵,高效排水,守护城市与农田|深圳鼎跃
洪水是常见的自然灾害,在春夏季节的我国降水多为丰富,容易造成城市内部的洪涝灾害。特别是低洼地区的积水,不仅容易造成城市交通的出行不便,还存在潜在的隐患,严重影响了人们正常生活。 潜水泵作为一种高效、可靠的排水…...
易基因:RNA甲基化修饰和R-loop的交叉调控:从分子机制到临床意义|深度综述
大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 R-loop(RNA-DNA杂合结构)是转录调控、DNA复制和修复等关键细胞过程的重要组成部分。但R-loop异常积累可能会破坏基因组完整性,从而导致多种疾病的发生…...
115 道 MySQL 面试题,从简单到深入!
1. 什么是数据库事务? 数据库事务是一个作为单个逻辑工作单元执行的一系列操作。事务具有ACID属性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性…...
一周学会Flask3 Python Web开发-flask3上下文全局变量session,g和current_app
锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili flask3提供了session,g和current_app上下文全局变量来方便我们操作访问数据。 以下是一个表格,用于比较Flask中的…...
MFC学习笔记-1
一、编辑框和按钮 //.h文件private:CString str;//给窗口类加了一个变量(定义一个成员变量),关联到IDC_EDIT1中(要在实现中关联,源文件文件夹中)CString str2;//接收button2,和IDC_EDIT2绑定 p…...
Linux搜索查找类指令
1、find指令 基本语法:find [搜索范围] [选项] 功能:将从指定目录向下递归地遍历其各个子目录,将满足条件的文件或目录显示在终端。 常用选项: 操作 命令示例 说明 查找指定路径下的所有文件 find /path/to/dir 查找指定目…...
江协科技/江科大-51单片机入门教程——P[1-1] 课程简介P[1-2] 开发工具介绍及软件安装
本教程也力求在玩好单片机的同时了解一些计算机的基本概念,了解电脑的一些基本操作,了解电路及其元器件的基本理论,为我们学习更高级的单片机,入门IT和信息技术行业,打下一定的基础。 目录 1.课程简介 2.开发工具及…...
监听load和hashchange事件
监听load和hashchange事件 上篇文章中,我们已经将菜谱的数据给拿到,并且已经可以渲染到页面上,本篇我们将为程序添加一些事件; 注:本项目来自于Jonas Schmedtmann创建,文章仅仅作为学习作用! 菜…...
深度剖析Seata源码:解锁分布式事务处理的核心逻辑
文章目录 写在文章开头如何使用源码(配置转掉)基于AT模式详解Seata全链路流程Seata服务端启动本地服务如何基于GlobalTransaction注解开启事务客户端如何开启分布式事务RM和TC如何协调处理分支事务RM生成回滚日志事务全局提交与回滚小结参考写在文章开头 在当今分布式系统日益…...
在 Ansys Mechanical 中解决干涉拟合
有意和无意的过盈配合在工程设计和有限元分析 (FEA) 中很常见。当两个组件重叠或接触时,就会发生这种情况,从而产生应力和变形,必须仔细分析以确保功能正常。有意干涉,例如轴和轴承之间的压配合或用于固定金…...
JMeter性能问题
性能测试中TPS上不去的几种原因 性能测试中TPS上不去的几种原因_tps一直上不去-CSDN博客 网络带宽 连接池 垃圾回收机制 压测脚本 通信连接机制 数据库配置 硬件资源 压测机 业务逻辑 系统架构 CPU过高什么原因 性能问题分析-CPU偏高 - 西瓜汁拌面 - 博客园 US C…...
美国国防部(DoD)SysML v2迁移指南项目
DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 分享一篇SysML v1向SysML v2迁移的资料。 下载地址:https://ndia.dtic.mil/wp-content/uploads/2023/systems/Thurs_1560710_Stirk.pdf 核心内容用DeepSeek整理如下&#…...
JavaWeb-GenericServlet源码分析(适配器/模板方法)
文章目录 类直接实现Servlet接口的弊端Servlet接口的方法适配器设计模式 适配器对象的改造关于init方法的ServletConfig对象来源使用模板方法设计模式改造init方法 GenericServlet内置抽象类ServletConfig接口ServletConfig接口简介测试再谈GenericServlet抽象类 类直接实现Ser…...
微机原理与汇编语言试题四
一、单项选择 1.(单选题)()指向的内存单元的值被CPU做为指令执行。 A. DS:SI B. CS:IP C. SS:SP D. ES:DI 正确答案:B 2.(单选题)当RESET信号进入高电平状态时,将使8086的()寄存器初始化为0FFFFH A. SS B. DS C. ES D. CS 正确答案:D 3.(单选题)堆栈段寄存器是( …...
[java基础-JVM篇]1_JVM自动内存管理
JVM内存管理涉及但不限于类加载、对象分配、垃圾回收等,本篇主要记录运行时数据区域与对象相关内容。 内容主要来源《深入理解Java虚拟机:JVM高级特性与最佳实践》与官方文档,理解与表述错漏之处恳请各位大佬指正。 目录 运行时数据区域 栈 栈…...
安宝特科技 | Vuzix Z100智能眼镜+AugmentOS:重新定义AI可穿戴设备的未来——从操作系统到硬件生态,如何掀起无感智能革命?
一、AugmentOS:AI可穿戴的“操作系统革命” 2025年2月3日,Vuzix与AI人机交互团队Mentra联合推出的AugmentOS,被业内视为智能眼镜领域的“iOS时刻”。这款全球首个专为智能眼镜设计的通用操作系统,通过三大突破重新定义了AI可穿戴…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
