当前位置: 首页 > news >正文

STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件,不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板为例,只用到USB,USART1极少的接口,体现FreeRTOS的各种操作过程。
在这里插入图片描述
操作教程(十三)配置FreeRTOS及相关环境,采用task api 任务访问函数获取任务状态参数,通过USB虚拟串口接收指令,根据指令执行相关的任务访问函数,并通过USB虚拟串口返回结果。常用的task api有如下一些:
在这里插入图片描述
FreeRTOS的教程较多,推荐参考正点原子所出的《STM32F407 FreeRTOS开发手册》了解相关知识。
在这里插入图片描述
在这里插入图片描述

STM32CUBEIDE工程配置

选择TIM1(也可以是其它TIM)作为FreeRTOS操作系统占用的时钟源:
在这里插入图片描述

在这里插入图片描述

配置时钟树包括USB的48MHz时钟:
在这里插入图片描述
配置PC13为低电平点灯的管脚:
在这里插入图片描述
配置USB串口:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
配置UART1串口(但本例中不用到UART1):
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

FreeRTOS配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成基础工程代码:
在这里插入图片描述
在生成代码的这个部分可以看到FreeRTOS代码部分:
在这里插入图片描述

任务实现

基于前述的配置,main.c代码里会加载Free-RTOS的配置,并启动几个任务的调度,当然,此时的任务都是什么也不干。实现LED闪灯,就在LED闪灯任务里加入代码即可:

void StartTask_TASK_LED_FLASH(void *argument)
{/* USER CODE BEGIN StartTask_TASK_LED_FLASH *//* Infinite loop */for(;;){osDelay(1000);HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);}/* USER CODE END StartTask_TASK_LED_FLASH */
}

也就实现了LED闪灯功能,其中osDelay(1000);实现1秒时间的操作系统调度延时,也就是1秒执行一次LED灯的亮灭。osDelay(1);是最小的调度延时,为1毫秒。要实现更小的延时,则可以用微秒延时函数实现,参考《STM32 HAL us delay(微秒延时)的指令延时实现方式及优化》

在USB虚拟串口的接收数据回调函数里,接收指令信息:
在这里插入图片描述

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{/* USER CODE BEGIN 6 */extern uint8_t USB_VCOM_BUFF[1024];extern uint32_t USB_VCOM_INDEX;extern osSemaphoreId_t USB_VCOM_BinarySem01Handle;extern BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;memcpy(USB_VCOM_BUFF+USB_VCOM_INDEX, Buf, *Len);xSemaphoreGiveFromISR(USB_VCOM_BinarySem01Handle, &USB_VCOM_pxHigherPriorityTaskWaken);USB_VCOM_INDEX += *Len;USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);USBD_CDC_ReceivePacket(&hUsbDeviceFS);return (USBD_OK);/* USER CODE END 6 */
}

在main.c的USB任务里,根据指令信息进行任务访问函数的调用和反馈:

void StartTask_TASK_USB_VCOM(void *argument)
{/* USER CODE BEGIN StartTask_TASK_USB_VCOM */BaseType_t err_stu = pdFALSE;UBaseType_t result = 0;/* Infinite loop */for(;;){osDelay(10);USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphoreerr_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);if(err_stu==pdTRUE){if(USB_VCOM_BUFF[0]==0x01) //Get task priority{result = uxTaskPriorityGet(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1{result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;vTaskPrioritySet(TASK_LED_FLASHHandle, result);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is set to %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);result = uxTaskGetSystemState(SB, 20, &rt);char * TB = pvPortMalloc(1024);sprintf(TB, "Task number got is %d\r\n", result);usbprintstring(TB);for(uint32_t i=0; i<result;i++){if(SB[i].xHandle == TASK_LED_FLASHHandle){sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);usbprintstring(TB);break;}}vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag{TaskHookFunction_t TV = 0;char * TB = pvPortMalloc(1024);BaseType_t cbf( void * param ){return 100;}vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );usbprintstring("LED task's TAG is set to digital\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);usbprintstring(TB);vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );usbprintstring("LED task's TAG is set to function\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);usbprintstring(TB);BaseType_t (*fp)(void);fp = TV;BaseType_t rv = fp();sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x06) //Get current task handle{TaskHandle_t th = xTaskGetCurrentTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name{TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");char * TB = pvPortMalloc(1024);sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle{TaskHandle_t th = xTaskGetIdleTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark{UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0A) //Get task running state{eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle{char * tn = pcTaskGetName(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's name is %s\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0C) //Get tick count{TickType_t tc = xTaskGetTickCount();char * TB = pvPortMalloc(1024);sprintf(TB, "Tick count is %ld\r\n", tc);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state{BaseType_t ts = xTaskGetSchedulerState();char * TB = pvPortMalloc(1024);sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0E) //Get task number{UBaseType_t tn = uxTaskGetNumberOfTasks();char * TB = pvPortMalloc(1024);sprintf(TB, "Task number is %ld\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information{char * TB = pvPortMalloc(1024);vTaskList(TB);usbprintstring("Name       State   Priority   Stack   Number\r\n");usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read{char * TB = pvPortMalloc(1024);vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);usbprintstring(TB);vPortFree(TB);}USB_VCOM_INDEX = 0;}}/* USER CODE END StartTask_TASK_USB_VCOM */
}

main.c文件的完整代码为:

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Example 2: LED flash + USB VCOM with semaphore binary for task api enquiry
//Written by Pegasus Yu
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usb_device.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "semphr.h"
#include "task.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase = 7.63238716; //For STM32F401RCT6 working in 84MHz main clockvoid PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {.name = "defaultTask",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for TASK_LED_FLASH */
osThreadId_t TASK_LED_FLASHHandle;
const osThreadAttr_t TASK_LED_FLASH_attributes = {.name = "TASK_LED_FLASH",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_UART1 */
osThreadId_t TASK_UART1Handle;
const osThreadAttr_t TASK_UART1_attributes = {.name = "TASK_UART1",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for TASK_USB_VCOM */
osThreadId_t TASK_USB_VCOMHandle;
const osThreadAttr_t TASK_USB_VCOM_attributes = {.name = "TASK_USB_VCOM",.stack_size = 128 * 4,.priority = (osPriority_t) osPriorityLow,
};
/* Definitions for USB_VCOM_BinarySem01 */
osSemaphoreId_t USB_VCOM_BinarySem01Handle;
const osSemaphoreAttr_t USB_VCOM_BinarySem01_attributes = {.name = "USB_VCOM_BinarySem01"
};
/* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
void StartDefaultTask(void *argument);
void StartTask_TASK_LED_FLASH(void *argument);
void StartTask_TASK_UART1(void *argument);
void StartTask_TASK_USB_VCOM(void *argument);/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
void usbprintstring(char * data)
{if(CDC_Transmit_FS((uint8_t *)data, strlen(data))==USBD_BUSY){PY_Delay_us_t(1000000);CDC_Transmit_FS((uint8_t *)data, strlen(data));}
}void usbprintarray(uint8_t * data, uint16_t len)
{if(CDC_Transmit_FS(data, len)==USBD_BUSY){PY_Delay_us_t(1000000);CDC_Transmit_FS(data, len);}
}uint8_t USB_VCOM_BUFF[1024];
uint32_t USB_VCOM_INDEX = 0;BaseType_t USB_VCOM_pxHigherPriorityTaskWaken;
TickType_t USB_VCOM_xBlockTime = 0;BaseType_t testfun(void)
{return 0x55;
}
/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_USART1_UART_Init();/* USER CODE BEGIN 2 *//* USER CODE END 2 *//* Init scheduler */osKernelInitialize();/* USER CODE BEGIN RTOS_MUTEX *//* add mutexes, ... *//* USER CODE END RTOS_MUTEX *//* Create the semaphores(s) *//* creation of USB_VCOM_BinarySem01 */USB_VCOM_BinarySem01Handle = osSemaphoreNew(1, 0, &USB_VCOM_BinarySem01_attributes);/* USER CODE BEGIN RTOS_SEMAPHORES *//* add semaphores, ... *//* USER CODE END RTOS_SEMAPHORES *//* USER CODE BEGIN RTOS_TIMERS *//* start timers, add new ones, ... *//* USER CODE END RTOS_TIMERS *//* USER CODE BEGIN RTOS_QUEUES *//* add queues, ... *//* USER CODE END RTOS_QUEUES *//* Create the thread(s) *//* creation of defaultTask */defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);/* creation of TASK_LED_FLASH */TASK_LED_FLASHHandle = osThreadNew(StartTask_TASK_LED_FLASH, NULL, &TASK_LED_FLASH_attributes);/* creation of TASK_UART1 */TASK_UART1Handle = osThreadNew(StartTask_TASK_UART1, NULL, &TASK_UART1_attributes);/* creation of TASK_USB_VCOM */TASK_USB_VCOMHandle = osThreadNew(StartTask_TASK_USB_VCOM, NULL, &TASK_USB_VCOM_attributes);/* USER CODE BEGIN RTOS_THREADS *//* add threads, ... *//* USER CODE END RTOS_THREADS *//* USER CODE BEGIN RTOS_EVENTS *//* add events, ... *//* USER CODE END RTOS_EVENTS *//* Start scheduler */osKernelStart();/* We should never get here as control is now taken by the scheduler *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief USART1 Initialization Function* @param None* @retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** Enable DMA controller clock*/
static void MX_DMA_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA2_CLK_ENABLE();/* DMA interrupt init *//* DMA2_Stream2_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 5, 0);HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOC_CLK_ENABLE();__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET);/*Configure GPIO pin : LED_Pin */GPIO_InitStruct.Pin = LED_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//* USER CODE BEGIN Header_StartDefaultTask */
/*** @brief  Function implementing the defaultTask thread.* @param  argument: Not used* @retval None*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{/* init code for USB_DEVICE */MX_USB_DEVICE_Init();/* USER CODE BEGIN 5 *//* Infinite loop */for(;;){osDelay(1);}/* USER CODE END 5 */
}/* USER CODE BEGIN Header_StartTask_TASK_LED_FLASH */
/**
* @brief Function implementing the TASK_LED_FLASH thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_LED_FLASH */
void StartTask_TASK_LED_FLASH(void *argument)
{/* USER CODE BEGIN StartTask_TASK_LED_FLASH *//* Infinite loop */for(;;){osDelay(1000);HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13);}/* USER CODE END StartTask_TASK_LED_FLASH */
}/* USER CODE BEGIN Header_StartTask_TASK_UART1 */
/**
* @brief Function implementing the TASK_UART1 thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_UART1 */
void StartTask_TASK_UART1(void *argument)
{/* USER CODE BEGIN StartTask_TASK_UART1 *//* Infinite loop */for(;;){osDelay(1);}/* USER CODE END StartTask_TASK_UART1 */
}/* USER CODE BEGIN Header_StartTask_TASK_USB_VCOM */
/**
* @brief Function implementing the TASK_USB_VCOM thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartTask_TASK_USB_VCOM */
void StartTask_TASK_USB_VCOM(void *argument)
{/* USER CODE BEGIN StartTask_TASK_USB_VCOM */BaseType_t err_stu = pdFALSE;UBaseType_t result = 0;/* Infinite loop */for(;;){osDelay(10);USB_VCOM_xBlockTime = 0; //Block(waiting) time to get semaphoreerr_stu = xSemaphoreTake(USB_VCOM_BinarySem01Handle, USB_VCOM_xBlockTime);if(err_stu==pdTRUE){if(USB_VCOM_BUFF[0]==0x01) //Get task priority{result = uxTaskPriorityGet(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x02) //Set task priority from current priority + 1{result = uxTaskPriorityGet(TASK_LED_FLASHHandle) + 1;vTaskPrioritySet(TASK_LED_FLASHHandle, result);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task's priority is set to %d\r\n", result);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x03) //Get all tasks' status and output LED task status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);result = uxTaskGetSystemState(SB, 20, &rt);char * TB = pvPortMalloc(1024);sprintf(TB, "Task number got is %d\r\n", result);usbprintstring(TB);for(uint32_t i=0; i<result;i++){if(SB[i].xHandle == TASK_LED_FLASHHandle){sprintf(TB, "LED task handle = %d\r\n", SB[i].xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", SB[i].pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", SB[i].eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", SB[i].uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", SB[i].uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", SB[i].ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", SB[i].pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", SB[i].usStackHighWaterMark);usbprintstring(TB);break;}}vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x04) //Get and output LED task's status{uint32_t rt = 0;TaskStatus_t * SB = pvPortMalloc(1024);vTaskGetInfo(TASK_LED_FLASHHandle, SB, pdTRUE, eInvalid);char * TB = pvPortMalloc(1024);sprintf(TB, "LED task handle = %d\r\n", (*SB).xHandle);usbprintstring(TB);sprintf(TB, "LED task name = %s\r\n", (*SB).pcTaskName);usbprintstring(TB);sprintf(TB, "LED task status = %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", (*SB).eCurrentState);usbprintstring(TB);sprintf(TB, "LED task current priority = %d\r\n", (*SB).uxCurrentPriority);usbprintstring(TB);sprintf(TB, "LED task base priority = %d\r\n", (*SB).uxBasePriority);usbprintstring(TB);sprintf(TB, "LED task runtime counter = %d\r\n", (*SB).ulRunTimeCounter);usbprintstring(TB);sprintf(TB, "LED task stack base = 0x%.8x\r\n", (*SB).pxStackBase);usbprintstring(TB);sprintf(TB, "LED task stack high water mark = %d\r\n", (*SB).usStackHighWaterMark);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x05) //Set and get task Tag{TaskHookFunction_t TV = 0;char * TB = pvPortMalloc(1024);BaseType_t cbf( void * param ){return 100;}vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) 1 );usbprintstring("LED task's TAG is set to digital\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (digital)\r\n", TV);usbprintstring(TB);vTaskSetApplicationTaskTag( TASK_LED_FLASHHandle, ( void * ) cbf );usbprintstring("LED task's TAG is set to function\r\n");TV = xTaskGetApplicationTaskTag( TASK_LED_FLASHHandle);sprintf(TB, "LED task's TAG is %.8x (function address)\r\n", TV);usbprintstring(TB);BaseType_t (*fp)(void);fp = TV;BaseType_t rv = fp();sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);rv = xTaskCallApplicationTaskHook( TASK_LED_FLASHHandle, 0);sprintf(TB, "Function return value is %d\r\n", rv);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x06) //Get current task handle{TaskHandle_t th = xTaskGetCurrentTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Current task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x07) //Get task handle from task name{TaskHandle_t th = xTaskGetHandle("TASK_LED_FLASH");char * TB = pvPortMalloc(1024);sprintf(TB, "'TASK_LED_FLASH' task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x08) //Get idle task handle{TaskHandle_t th = xTaskGetIdleTaskHandle();char * TB = pvPortMalloc(1024);sprintf(TB, "Idle task's handle(pointer) is 0x%.8x\r\n", th);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x09) //Get task stack-high-water-mark{UBaseType_t tshwm = uxTaskGetStackHighWaterMark(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's stack-high-water-mark is %d\r\n", tshwm);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0A) //Get task running state{eTaskState ts = eTaskGetState(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's running state is %d\r\neRunning=0;eReady=1;eBlocked=2;eSuspended=3;eDeleted=4;eInvalid=5;\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0B) //Get task name from task handle{char * tn = pcTaskGetName(TASK_LED_FLASHHandle);char * TB = pvPortMalloc(1024);sprintf(TB, "Led task's name is %s\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0C) //Get tick count{TickType_t tc = xTaskGetTickCount();char * TB = pvPortMalloc(1024);sprintf(TB, "Tick count is %ld\r\n", tc);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0D) //Get scheduler state{BaseType_t ts = xTaskGetSchedulerState();char * TB = pvPortMalloc(1024);sprintf(TB, "Scheduler state is %ld\r\n0:taskSCHEDULER_SUSPENDED;1:taskSCHEDULER_NOT_STARTED;2:taskSCHEDULER_RUNNING\r\n", ts);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0E) //Get task number{UBaseType_t tn = uxTaskGetNumberOfTasks();char * TB = pvPortMalloc(1024);sprintf(TB, "Task number is %ld\r\n", tn);usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x0F) //Get all tasks' information{char * TB = pvPortMalloc(1024);vTaskList(TB);usbprintstring("Name       State   Priority   Stack   Number\r\n");usbprintstring(TB);vPortFree(TB);}if(USB_VCOM_BUFF[0]==0x10) //Task's thread local storage pointer write and read{char * TB = pvPortMalloc(1024);vTaskSetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0, TB);void * ta = pvTaskGetThreadLocalStoragePointer(TASK_LED_FLASHHandle, 0);sprintf(TB, "LED Task's storage index is 0x%.8X\r\n", ta);usbprintstring(TB);vPortFree(TB);}USB_VCOM_INDEX = 0;}}/* USER CODE END StartTask_TASK_USB_VCOM */
}/*** @brief  Period elapsed callback in non blocking mode* @note   This function is called  when TIM1 interrupt took place, inside* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment* a global variable "uwTick" used as application time base.* @param  htim : TIM handle* @retval None*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{/* USER CODE BEGIN Callback 0 *//* USER CODE END Callback 0 */if (htim->Instance == TIM1) {HAL_IncTick();}/* USER CODE BEGIN Callback 1 *//* USER CODE END Callback 1 */
}/*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

手动调整的代码

有几处的配置调整,需要手动进行:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

例程下载

STM32 STM32CUBEIDE FreeRTOS操作教程(十三):stask api 任务访问函数 例程

例程测试

例程测试效果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

–End–

相关文章:

STM32CUBEIDE FreeRTOS操作教程(十三):task api 任务访问函数

STM32CUBEIDE FreeRTOS操作教程&#xff08;十三&#xff09;&#xff1a;task api 任务访问函数 STM32CUBE开发环境集成了STM32 HAL库进行FreeRTOS配置和开发的组件&#xff0c;不需要用户自己进行FreeRTOS的移植。这里介绍最简化的用户操作类应用教程。以STM32F401RCT6开发板…...

Jmeter+Jenkins接口压力测试持续集成

项目介绍 接口功能测试应用&#xff1a; http://www.weather.com.cn/data/cityinfo/<city_code>.html 测试功能&#xff1a;获取对应城市的天气预报 请求方法&#xff1a;Get 压测脚本开发工具&#xff1a;jmeter 源码脚本位置&#xff1a; https://github.com/shife…...

深入浅出ES6:现代JavaScript的基石

ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的一次重大更新&#xff0c;引入了许多新特性&#xff0c;使JavaScript更加强大、优雅和易于维护。这些特性已经成为现代JavaScript开发的基石&#xff0c;掌握它们对于任何JavaScript开发者都至关重要。本文将深入…...

实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能

下面将详细介绍如何实现使用RBF&#xff08;径向基函数&#xff09;神经网络模拟二阶电机数学模型中的非线性干扰&#xff0c;以及使用WNN&#xff08;小波神经网络&#xff09;预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行&#xff1a; 步骤1&#x…...

潜水泵,高效排水,守护城市与农田|深圳鼎跃

洪水是常见的自然灾害&#xff0c;在春夏季节的我国降水多为丰富&#xff0c;容易造成城市内部的洪涝灾害。特别是低洼地区的积水&#xff0c;不仅容易造成城市交通的出行不便&#xff0c;还存在潜在的隐患&#xff0c;严重影响了人们正常生活。 潜水泵作为一种高效、可靠的排水…...

易基因:RNA甲基化修饰和R-loop的交叉调控:从分子机制到临床意义|深度综述

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 R-loop&#xff08;RNA-DNA杂合结构&#xff09;是转录调控、DNA复制和修复等关键细胞过程的重要组成部分。但R-loop异常积累可能会破坏基因组完整性&#xff0c;从而导致多种疾病的发生…...

115 道 MySQL 面试题,从简单到深入!

1. 什么是数据库事务&#xff1f; 数据库事务是一个作为单个逻辑工作单元执行的一系列操作。事务具有ACID属性&#xff0c;即原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xf…...

一周学会Flask3 Python Web开发-flask3上下文全局变量session,g和current_app

锋哥原创的Flask3 Python Web开发 Flask3视频教程&#xff1a; 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili flask3提供了session,g和current_app上下文全局变量来方便我们操作访问数据。 以下是一个表格&#xff0c;用于比较Flask中的…...

MFC学习笔记-1

一、编辑框和按钮 //.h文件private:CString str;//给窗口类加了一个变量&#xff08;定义一个成员变量&#xff09;&#xff0c;关联到IDC_EDIT1中&#xff08;要在实现中关联&#xff0c;源文件文件夹中&#xff09;CString str2;//接收button2&#xff0c;和IDC_EDIT2绑定 p…...

Linux搜索查找类指令

1、find指令 基本语法&#xff1a;find [搜索范围] [选项] 功能&#xff1a;将从指定目录向下递归地遍历其各个子目录&#xff0c;将满足条件的文件或目录显示在终端。 常用选项&#xff1a; 操作 命令示例 说明 查找指定路径下的所有文件 find /path/to/dir 查找指定目…...

江协科技/江科大-51单片机入门教程——P[1-1] 课程简介P[1-2] 开发工具介绍及软件安装

本教程也力求在玩好单片机的同时了解一些计算机的基本概念&#xff0c;了解电脑的一些基本操作&#xff0c;了解电路及其元器件的基本理论&#xff0c;为我们学习更高级的单片机&#xff0c;入门IT和信息技术行业&#xff0c;打下一定的基础。 目录 1.课程简介 2.开发工具及…...

监听load和hashchange事件

监听load和hashchange事件 上篇文章中&#xff0c;我们已经将菜谱的数据给拿到&#xff0c;并且已经可以渲染到页面上&#xff0c;本篇我们将为程序添加一些事件&#xff1b; 注&#xff1a;本项目来自于Jonas Schmedtmann创建&#xff0c;文章仅仅作为学习作用&#xff01; 菜…...

深度剖析Seata源码:解锁分布式事务处理的核心逻辑

文章目录 写在文章开头如何使用源码(配置转掉)基于AT模式详解Seata全链路流程Seata服务端启动本地服务如何基于GlobalTransaction注解开启事务客户端如何开启分布式事务RM和TC如何协调处理分支事务RM生成回滚日志事务全局提交与回滚小结参考写在文章开头 在当今分布式系统日益…...

在 Ansys Mechanical 中解决干涉拟合

有意和无意的过盈配合在工程设计和有限元分析 &#xff08;FEA&#xff09; 中很常见。当两个组件重叠或接触时&#xff0c;就会发生这种情况&#xff0c;从而产生应力和变形&#xff0c;必须仔细分析以确保功能正常。有意干涉&#xff0c;例如轴和轴承之间的压配合或用于固定金…...

JMeter性能问题

性能测试中TPS上不去的几种原因 性能测试中TPS上不去的几种原因_tps一直上不去-CSDN博客 网络带宽 连接池 垃圾回收机制 压测脚本 通信连接机制 数据库配置 硬件资源 压测机 业务逻辑 系统架构 CPU过高什么原因 性能问题分析-CPU偏高 - 西瓜汁拌面 - 博客园 US C…...

美国国防部(DoD)SysML v2迁移指南项目

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 分享一篇SysML v1向SysML v2迁移的资料。 下载地址&#xff1a;https://ndia.dtic.mil/wp-content/uploads/2023/systems/Thurs_1560710_Stirk.pdf 核心内容用DeepSeek整理如下&#…...

JavaWeb-GenericServlet源码分析(适配器/模板方法)

文章目录 类直接实现Servlet接口的弊端Servlet接口的方法适配器设计模式 适配器对象的改造关于init方法的ServletConfig对象来源使用模板方法设计模式改造init方法 GenericServlet内置抽象类ServletConfig接口ServletConfig接口简介测试再谈GenericServlet抽象类 类直接实现Ser…...

微机原理与汇编语言试题四

一、单项选择 1.(单选题)()指向的内存单元的值被CPU做为指令执行。 A. DS:SI B. CS:IP C. SS:SP D. ES:DI 正确答案:B 2.(单选题)当RESET信号进入高电平状态时&#xff0c;将使8086的()寄存器初始化为0FFFFH A. SS B. DS C. ES D. CS 正确答案:D 3.(单选题)堆栈段寄存器是( …...

[java基础-JVM篇]1_JVM自动内存管理

JVM内存管理涉及但不限于类加载、对象分配、垃圾回收等&#xff0c;本篇主要记录运行时数据区域与对象相关内容。 内容主要来源《深入理解Java虚拟机&#xff1a;JVM高级特性与最佳实践》与官方文档&#xff0c;理解与表述错漏之处恳请各位大佬指正。 目录 运行时数据区域 栈 栈…...

安宝特科技 | Vuzix Z100智能眼镜+AugmentOS:重新定义AI可穿戴设备的未来——从操作系统到硬件生态,如何掀起无感智能革命?

一、AugmentOS&#xff1a;AI可穿戴的“操作系统革命” 2025年2月3日&#xff0c;Vuzix与AI人机交互团队Mentra联合推出的AugmentOS&#xff0c;被业内视为智能眼镜领域的“iOS时刻”。这款全球首个专为智能眼镜设计的通用操作系统&#xff0c;通过三大突破重新定义了AI可穿戴…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

Redis上篇--知识点总结

Redis上篇–解析 本文大部分知识整理自网上&#xff0c;在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库&#xff0c;Redis 的键值对中的 key 就是字符串对象&#xff0c;而 val…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...

RabbitMQ 各类交换机

为什么要用交换机&#xff1f; 交换机用来路由消息。如果直发队列&#xff0c;这个消息就被处理消失了&#xff0c;那别的队列也需要这个消息怎么办&#xff1f;那就要用到交换机 交换机类型 1&#xff0c;fanout&#xff1a;广播 特点 广播所有消息​​&#xff1a;将消息…...

云原生时代的系统设计:架构转型的战略支点

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、云原生的崛起&#xff1a;技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深&#xff0c;传统的 I…...