当前位置: 首页 > news >正文

Go语言中的信号量:原理与实践指南

Go语言中的信号量:原理与实践指南

引言

在并发编程中,控制对共享资源的访问是一个经典问题。Go语言提供了丰富的并发原语(如sync.Mutex),但当我们需要灵活限制并发数量时,信号量(Semaphore)便成为重要工具。本文将深入解析Go中信号量的实现方式,并通过代码示例演示其典型应用场景。


一、信号量基础

什么是信号量?

信号量是一种同步机制,用于限制同时访问某资源的线程(或goroutine)数量。其核心是一个计数器,操作包括:

  • P操作(获取):计数器减1,若计数器为0则阻塞等待
  • V操作(释放):计数器加1,唤醒等待的线程

与互斥锁(Mutex)的区别:

特性互斥锁信号量
并发限制数量1可自定义(N≥1)
适用场景严格互斥访问流量控制、资源池

二、Go中的两种实现方案

方案1:基于Channel的实现(标准库方式)

go
package mainimport (
"fmt"
"sync"
"time"
)func main() {
const maxConcurrent = 2 // 最大并发数
sem := make(chan struct{}, maxConcurrent)
var wg sync.WaitGroupfor i := 1; i <= 5; i++ {wg.Add(1)go func(id int) {defer wg.Done()sem <- struct{}{}         // 获取信号量defer func() { <-sem }()  // 释放信号量fmt.Printf("Worker %d started\n", id)time.Sleep(time.Second)   // 模拟工作负载fmt.Printf("Worker %d done\n", id)}(i)}wg.Wait()fmt.Println("All workers completed")
}

代码解析

  1. sem := make(chan struct{}, N) 创建容量为N的缓冲通道
  2. sem <- struct{}{} 通过发送空结构体占用槽位
  3. <-sem 接收数据释放槽位
  4. defer确保无论流程如何都会释放资源

方案2:使用semaphore.Weighted(扩展库实现)

bash
go get golang.org/x/sync/semaphore  # 安装依赖
go
package mainimport (
"context"
"fmt"
"golang.org/x/sync/semaphore"
"sync"
"time"
)func main() {
const (
maxConcurrent = 2    // 最大并发数
totalWorkers  = 5    // 总任务数
)sem := semaphore.NewWeighted(maxConcurrent)ctx := context.Background()var wg sync.WaitGroupfor i := 1; i <= totalWorkers; i++ {wg.Add(1)go func(id int) {defer wg.Done()// 尝试获取信号量if err := sem.Acquire(ctx, 1); err != nil {fmt.Printf("Worker %d failed: %v\n", id, err)return}defer sem.Release(1)fmt.Printf("Worker %d started\n", id)time.Sleep(time.Second)fmt.Printf("Worker %d done\n", id)}(i)}wg.Wait()fmt.Println("All workers completed")
}

特性说明

  • 支持加权请求(如一次申请多个许可)
  • 可结合context.Context实现超时控制
  • 更适用于复杂资源管理场景

三、关键应用场景

1. 数据库连接池控制

go
// 创建最大10连接的信号量
var dbSem = semaphore.NewWeighted(10)func QueryDatabase(query string) {
dbSem.Acquire(context.Background(), 1)
defer dbSem.Release(1)// 执行数据库操作
}

2. 限流下载器

go
// 限制同时下载数为3
var downloadSem = make(chan struct{}, 3)func DownloadFile(url string) {
downloadSem <- struct{}{}
defer func() { <-downloadSem }()// 执行下载逻辑
}

3. 批量任务分流

go
// 控制100个并发处理任务
sem := semaphore.NewWeighted(100)
for _, task := range tasks {
go func(t Task) {
sem.Acquire(ctx, 1)
defer sem.Release(1)
process(t)
}(task)
}

四、实现方案对比

维度Channel实现semaphore.Weighted
标准库支持✅ 无需额外依赖❌ 需要安装扩展库
加权请求❌ 不支持✅ 支持
超时控制需搭配select实现✅ 原生支持Context
易用性简单场景推荐复杂场景推荐
性能开销较低略高(含锁机制)

五、最佳实践建议

  1. 资源释放
    始终使用defer释放信号量,避免协程异常导致资源泄漏

  2. 容量规划
    根据实际硬件资源(CPU核心数、IO带宽等)设置合理并发数

  3. 异常处理
    使用semaphore.Weighted时检查Acquire()返回的error

  4. 调试技巧
    添加指标监控当前信号量使用率:

go
fmt.Printf(“Available: %d/%d\n”, len(sem), cap(sem))

结语

信号量为Go并发编程提供了灵活的资源管控能力。无论是简单的通道实现,还是功能更强的semaphore.Weighted,开发者都可以根据具体需求选择合适的方案。合理使用信号量不仅能提升程序稳定性,还能有效避免资源竞争导致的性能瓶颈。

扩展阅读

  • Go官方并发指南
  • semaphore包源码分析

相关文章:

Go语言中的信号量:原理与实践指南

Go语言中的信号量&#xff1a;原理与实践指南 引言 在并发编程中&#xff0c;控制对共享资源的访问是一个经典问题。Go语言提供了丰富的并发原语&#xff08;如sync.Mutex&#xff09;&#xff0c;但当我们需要灵活限制并发数量时&#xff0c;信号量&#xff08;Semaphore&am…...

Qt如何将数据传入labview,Qt又如何从labview中读取数据?

Qt如何将数据传入labview,Qt又如何从labview中读取数据? Qt如何将数据传入labviewQt如何从labview中读取数据 Qt如何将数据传入labview Qt如何从labview中读取数据...

vue3学习2

ts定义接口&#xff1a; 引入的时候要加type&#xff1a; 调用&#xff1a; ts创建自定义type类型&#xff0c;引入的时候也要加type&#xff1a; reactive可以直接传泛型&#xff1a; 加?声明不强制&#xff1a; defineProps接收父组件传递的props&#xff0c;其中defineProp…...

spring中手写注解开发(创建对象篇)

说明&#xff1a; 在spring底层中并不是我写的如此&#xff0c;这篇只是我用我自己的方式实现了使用注解组件扫描并且 创建对象&#xff0c;方法并不是很难&#xff0c;可以看一看&#xff0c;欢迎大佬评论 第一步&#xff1a; 我们需要自己写一个注解&#xff0c;我用的是idea…...

Android OpenGLES2.0开发(十一):渲染YUV

人生如逆旅&#xff0c;我亦是行人 Android OpenGLES开发&#xff1a;EGL环境搭建Android OpenGLES2.0开发&#xff08;一&#xff09;&#xff1a;艰难的开始Android OpenGLES2.0开发&#xff08;二&#xff09;&#xff1a;环境搭建Android OpenGLES2.0开发&#xff08;三&am…...

在linux中利用conda安装blast

在 Linux 中使用 conda 安装 BLAST 非常简单。conda 是一个流行的包管理工具&#xff0c;可以轻松安装和管理生物信息学工具&#xff0c;包括 BLAST。以下是具体步骤&#xff1a; 1. 确保已安装 Conda 如果你还没有安装 conda&#xff0c;可以参考以下步骤安装 Miniconda&…...

三、多项式环

文章目录 一、多项式环的定义二、多项式环的性质1. 多项式加法2. 多项式乘法3. 满足的运算规律4. 次数5. 单位元 三、剩余多项式环&#xff08;商多项式环&#xff09;四、有限多项式环五、多项式环的性质与特性1. 子环与理想2. 不可约性和素性3. 有限生成性 一、多项式环的定义…...

python unzip file

要在 Python 中解压文件并显示进度&#xff0c;我们需要在解压过程中跟踪文件的提取进度。由于 zipfile 模块本身不直接支持进度显示&#xff0c;我们可以通过手动计算并使用 tqdm 库来显示进度条。 安装 tqdm 首先&#xff0c;确保你已经安装了 tqdm 库&#xff0c;用于显示…...

MySQL-增删改查

一、Create(创建) &#x1f4d6; 语法&#xff1a; INSERT INTO table_name(value_list); 当我们使用表的时候&#xff0c;就可以使用这个语法来向表中插入元素~ 我们这边创建一个用于示范的表(Student)~ create table student( id int, name varchar(20), chinese int, math…...

LeetCode 热题100 15. 三数之和

LeetCode 热题100 | 15. 三数之和 大家好&#xff0c;今天我们来解决一道经典的算法题——三数之和。这道题在 LeetCode 上被标记为中等难度&#xff0c;要求我们从一个整数数组中找到所有不重复的三元组&#xff0c;使得三元组的和为 0。下面我将详细讲解解题思路&#xff0c…...

网络空间安全(1)web应用程序的发展历程

前言 Web应用程序的发展历程是一部技术创新与社会变革交织的长卷&#xff0c;从简单的文档共享系统到如今复杂、交互式、数据驱动的平台&#xff0c;经历了多个重要阶段。 一、起源与初期发展&#xff08;1989-1995年&#xff09; Web的诞生&#xff1a; 1989年&#xff0c;欧洲…...

ABAQUS功能梯度材料FGM模型

功能梯度材料&#xff08;FGM&#xff09;作为一种新型复合材料&#xff0c;通过材料内部成分或微观结构的梯度变化&#xff0c;优化特定性能适应复杂环境&#xff0c;被广泛应用于高温防护、结构优化、生物医学、光电设备等领域。本案例介绍在ABAQUS内建立功能梯度材料模型。 …...

自适应增强技术

1. 传统图像处理中的自适应增强&#xff08;如CLAHE&#xff09; 难度&#xff1a;⭐容易 实现方式&#xff1a;调用成熟的库&#xff08;如OpenCV&#xff09;函数即可完成。 示例代码&#xff08;CLAHE增强&#xff09;&#xff1a; <PYTHON> import cv2# 输入灰度或彩…...

虚拟项目:一个好用的工具平台

在当今数字化的时代&#xff0c;虚拟项目如雨后春笋般涌现&#xff0c;为人们提供了诸多便捷且充满机遇的选择。以下将为大家详细介绍几种颇具特色的虚拟项目&#xff0c;包括书签、资源站、题库、虚拟商城、专栏、证件照以及分站搭建等&#xff0c;一起来了解它们各自的独特之…...

MySQL 和 Elasticsearch 之间的数据同步

MySQL 和 Elasticsearch 之间的数据同步是常见的需求&#xff0c;通常用于将结构化数据从关系型数据库同步到 Elasticsearch 以实现高效的全文搜索、聚合分析和实时查询。以下是几种常用的同步方案及其实现方法&#xff1a; 1. 应用层双写&#xff08;双写模式&#xff09; 原…...

PS裁剪工具

裁剪&#xff1a; 多张图同一标准裁剪&#xff1a;裁剪–》前面的图像–》选择其他图像–》 确定 选区–》裁剪工具–》确定&#xff1a;选区制作矩形裁剪 裁剪–》拉直 裁剪–》内容识别&#xff1a;当裁剪大于图片大小&#xff0c;会自动填充空白区域 &#xff08;栅格化图层…...

[Web 安全] PHP 反序列化漏洞 —— PHP 序列化 反序列化

关注这个专栏的其他相关笔记&#xff1a;[Web 安全] 反序列化漏洞 - 学习笔记-CSDN博客 0x01&#xff1a;PHP 序列化 — Serialize 序列化就是将对象的状态信息转化为可以存储或传输的形式的过程&#xff0c;在 PHP 中&#xff0c;通常使用 serialize() 函数来完成序列化的操作…...

QT入门--QMainWindow

从上向下依次是菜单栏&#xff0c;工具栏&#xff0c;铆接部件&#xff08;浮动窗口&#xff09;&#xff0c;状态栏&#xff0c;中心部件 菜单栏 创建菜单栏 QMenuBar* mybar1 menuBar(); 将菜单栏放到窗口中 setMenuBar(mybar1); 创建菜单 QMenu *myfilemenu mybar1-…...

C++ | 高级教程 | 信号处理

&#x1f47b; 概念 信号 —— 操作系统传给进程的中断&#xff0c;会提早终止程序有些信号不能被程序捕获&#xff0c;有些则可以被捕获&#xff0c;并基于信号采取适当的动作 信号描述SIGABRT程序的异常终止&#xff0c;如调用 abortSIGFPE错误的算术运算&#xff0c;比如除…...

最新前端框架选型对比与建议(React/Vue/Svelte/Angular)

前端框架选型对比与建议&#xff08;React/Vue/Svelte/Angular&#xff09; 一、核心框架技术特性对比&#xff08;基于最新版本&#xff09; 维度React 19 25Vue 3.5 12Svelte 5 25Angular 19 5核心理念函数式编程、JSX语法、虚拟DOM渐进式框架、组合式API、模板语法编译时框…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...