当前位置: 首页 > news >正文

LeetCode 热题100 15. 三数之和

LeetCode 热题100 | 15. 三数之和

大家好,今天我们来解决一道经典的算法题——三数之和。这道题在 LeetCode 上被标记为中等难度,要求我们从一个整数数组中找到所有不重复的三元组,使得三元组的和为 0。下面我将详细讲解解题思路,并附上 Python 代码实现。


题目描述

给定一个整数数组 nums,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != kj != k,同时还满足 nums[i] + nums[j] + nums[k] == 0。请你返回所有和为 0 且不重复的三元组。

示例:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]

解题思路

这道题的核心是找到所有满足条件的三元组,同时避免重复。我们可以通过排序数组和双指针法来高效地解决这个问题。

核心思想
  1. 排序数组

    • 将数组排序,方便后续使用双指针法。
  2. 遍历数组

    • 固定一个数 nums[i],然后在剩下的数组中使用双指针法寻找两个数 nums[left]nums[right],使得 nums[i] + nums[left] + nums[right] == 0
  3. 双指针法

    • 初始化 left = i + 1right = len(nums) - 1
    • 如果 nums[i] + nums[left] + nums[right] < 0,则 left 右移。
    • 如果 nums[i] + nums[left] + nums[right] > 0,则 right 左移。
    • 如果 nums[i] + nums[left] + nums[right] == 0,则找到一个三元组,记录下来,并跳过重复的元素。
  4. 去重

    • 在遍历过程中,跳过重复的 nums[i]nums[left]nums[right],避免重复的三元组。

代码实现

def threeSum(nums):""":type nums: List[int]:rtype: List[List[int]]"""nums.sort()  # 排序数组result = []  # 存储结果for i in range(len(nums) - 2):  # 遍历数组,固定 nums[i]if i > 0 and nums[i] == nums[i - 1]:  # 跳过重复的 nums[i]continueleft, right = i + 1, len(nums) - 1  # 初始化双指针while left < right:total = nums[i] + nums[left] + nums[right]  # 计算三数之和if total < 0:left += 1  # 和小于 0,左指针右移elif total > 0:right -= 1  # 和大于 0,右指针左移else:result.append([nums[i], nums[left], nums[right]])  # 找到一个三元组# 跳过重复的 nums[left] 和 nums[right]while left < right and nums[left] == nums[left + 1]:left += 1while left < right and nums[right] == nums[right - 1]:right -= 1left += 1right -= 1return result

代码解析

  1. 排序数组

    • 将数组排序,方便后续使用双指针法。
  2. 遍历数组

    • 固定一个数 nums[i],然后在剩下的数组中使用双指针法寻找两个数 nums[left]nums[right]
  3. 双指针法

    • 初始化 left = i + 1right = len(nums) - 1
    • 根据三数之和的大小,移动 leftright 指针。
  4. 去重

    • 在遍历过程中,跳过重复的 nums[i]nums[left]nums[right],避免重复的三元组。

复杂度分析

  • 时间复杂度:O(n²),其中 n 是数组的长度。排序的时间复杂度为 O(n log n),双指针法的时间复杂度为 O(n²)。
  • 空间复杂度:O(1),只使用了常数个额外空间。

示例运行

示例 1
# 输入:nums = [-1,0,1,2,-1,-4]
nums = [-1, 0, 1, 2, -1, -4]
print(threeSum(nums))  # 输出: [[-1, -1, 2], [-1, 0, 1]]
示例 2
# 输入:nums = [0,1,1]
nums = [0, 1, 1]
print(threeSum(nums))  # 输出: []
示例 3
# 输入:nums = [0,0,0]
nums = [0, 0, 0]
print(threeSum(nums))  # 输出: [[0, 0, 0]]

总结

通过排序数组和双指针法,我们可以高效地找到所有满足条件的三元组,并避免重复。这种方法的时间复杂度为 O(n²),能够处理较大的输入规模。希望这篇题解对你有帮助!如果还有其他问题,欢迎继续提问!

关注我,获取更多算法题解和编程技巧!

相关文章:

LeetCode 热题100 15. 三数之和

LeetCode 热题100 | 15. 三数之和 大家好&#xff0c;今天我们来解决一道经典的算法题——三数之和。这道题在 LeetCode 上被标记为中等难度&#xff0c;要求我们从一个整数数组中找到所有不重复的三元组&#xff0c;使得三元组的和为 0。下面我将详细讲解解题思路&#xff0c…...

网络空间安全(1)web应用程序的发展历程

前言 Web应用程序的发展历程是一部技术创新与社会变革交织的长卷&#xff0c;从简单的文档共享系统到如今复杂、交互式、数据驱动的平台&#xff0c;经历了多个重要阶段。 一、起源与初期发展&#xff08;1989-1995年&#xff09; Web的诞生&#xff1a; 1989年&#xff0c;欧洲…...

ABAQUS功能梯度材料FGM模型

功能梯度材料&#xff08;FGM&#xff09;作为一种新型复合材料&#xff0c;通过材料内部成分或微观结构的梯度变化&#xff0c;优化特定性能适应复杂环境&#xff0c;被广泛应用于高温防护、结构优化、生物医学、光电设备等领域。本案例介绍在ABAQUS内建立功能梯度材料模型。 …...

自适应增强技术

1. 传统图像处理中的自适应增强&#xff08;如CLAHE&#xff09; 难度&#xff1a;⭐容易 实现方式&#xff1a;调用成熟的库&#xff08;如OpenCV&#xff09;函数即可完成。 示例代码&#xff08;CLAHE增强&#xff09;&#xff1a; <PYTHON> import cv2# 输入灰度或彩…...

虚拟项目:一个好用的工具平台

在当今数字化的时代&#xff0c;虚拟项目如雨后春笋般涌现&#xff0c;为人们提供了诸多便捷且充满机遇的选择。以下将为大家详细介绍几种颇具特色的虚拟项目&#xff0c;包括书签、资源站、题库、虚拟商城、专栏、证件照以及分站搭建等&#xff0c;一起来了解它们各自的独特之…...

MySQL 和 Elasticsearch 之间的数据同步

MySQL 和 Elasticsearch 之间的数据同步是常见的需求&#xff0c;通常用于将结构化数据从关系型数据库同步到 Elasticsearch 以实现高效的全文搜索、聚合分析和实时查询。以下是几种常用的同步方案及其实现方法&#xff1a; 1. 应用层双写&#xff08;双写模式&#xff09; 原…...

PS裁剪工具

裁剪&#xff1a; 多张图同一标准裁剪&#xff1a;裁剪–》前面的图像–》选择其他图像–》 确定 选区–》裁剪工具–》确定&#xff1a;选区制作矩形裁剪 裁剪–》拉直 裁剪–》内容识别&#xff1a;当裁剪大于图片大小&#xff0c;会自动填充空白区域 &#xff08;栅格化图层…...

[Web 安全] PHP 反序列化漏洞 —— PHP 序列化 反序列化

关注这个专栏的其他相关笔记&#xff1a;[Web 安全] 反序列化漏洞 - 学习笔记-CSDN博客 0x01&#xff1a;PHP 序列化 — Serialize 序列化就是将对象的状态信息转化为可以存储或传输的形式的过程&#xff0c;在 PHP 中&#xff0c;通常使用 serialize() 函数来完成序列化的操作…...

QT入门--QMainWindow

从上向下依次是菜单栏&#xff0c;工具栏&#xff0c;铆接部件&#xff08;浮动窗口&#xff09;&#xff0c;状态栏&#xff0c;中心部件 菜单栏 创建菜单栏 QMenuBar* mybar1 menuBar(); 将菜单栏放到窗口中 setMenuBar(mybar1); 创建菜单 QMenu *myfilemenu mybar1-…...

C++ | 高级教程 | 信号处理

&#x1f47b; 概念 信号 —— 操作系统传给进程的中断&#xff0c;会提早终止程序有些信号不能被程序捕获&#xff0c;有些则可以被捕获&#xff0c;并基于信号采取适当的动作 信号描述SIGABRT程序的异常终止&#xff0c;如调用 abortSIGFPE错误的算术运算&#xff0c;比如除…...

最新前端框架选型对比与建议(React/Vue/Svelte/Angular)

前端框架选型对比与建议&#xff08;React/Vue/Svelte/Angular&#xff09; 一、核心框架技术特性对比&#xff08;基于最新版本&#xff09; 维度React 19 25Vue 3.5 12Svelte 5 25Angular 19 5核心理念函数式编程、JSX语法、虚拟DOM渐进式框架、组合式API、模板语法编译时框…...

游戏引擎学习第123天

仓库:https://gitee.com/mrxiao_com/2d_game_3 黑板&#xff1a;线程同步/通信 目标是从零开始编写一个完整的游戏。我们不使用引擎&#xff0c;也不依赖任何库&#xff0c;完全自己编写游戏所需的所有代码。我们做这个节目不仅是为了教育目的&#xff0c;同时也是因为编程本…...

计算机网络:从底层原理到前沿应用,解锁数字世界的连接密码

计算机网络&#xff1a;从底层原理到前沿应用&#xff0c;解锁数字世界的连接密码 在信息如洪流般奔涌的时代&#xff0c;计算机网络宛如无形的脉络&#xff0c;贯穿于我们生活的每一个角落。它不仅是数据传输的通道&#xff0c;更是连接全球、驱动创新的核心力量。从日常的网络…...

grafana K6压测

文章目录 install and runscript.jsoptions最佳实践 report 解析 https://grafana.com/docs/k6/latest/get-started install and run install # mac brew install k6当前目录下生成压测脚本 # create file script.js k6 new [filename] # create file ‘script.js’ in …...

Vue的组合式API和选项式API有什么区别

Vue3的组合式API&#xff08;Composition API&#xff09;和选项式API&#xff08;Options API&#xff09;是两种不同的组件编写方式&#xff0c;主要区别如下&#xff1a; 1. 代码组织方式 选项式API&#xff1a; 按照选项&#xff08;如data、methods、computed等&#xff0…...

ubuntu 安全策略(等保)

windows 三个帐号屏保设置组策略,密码超时次数/审计记录&#xff1b; linux 应具有登录失败处理功能&#xff0c;应配置并启用结束会话、限制非法登录次数和当登录连接超时自动退出等相关措施。 1、在系统中新建测试用户&#xff0c;使用此用户登录时多次输入错误密码&…...

c/c++蓝桥杯经典编程题100道(22)最短路径问题

最短路径问题 ->返回c/c蓝桥杯经典编程题100道-目录 目录 最短路径问题 一、题型解释 二、例题问题描述 三、C语言实现 解法1&#xff1a;Dijkstra算法&#xff08;正权图&#xff0c;难度★★&#xff09; 解法2&#xff1a;Bellman-Ford算法&#xff08;含负权边&a…...

AI工具集合

设计相关 1. mastrtgo&#xff08;暂时免费&#xff09; &#xff1a;可以根据自然语言生成UI设计稿和前端代码 MasterGo 莫高设计 - AI 时代的数字界面生产平台 2. reddy.ai&#xff08;暂时免费&#xff09;: 国外类似mastrtgo的平台 Readdy 3. midjourney &#xff08;…...

CSDN 博客:CC++ 内存管理详解

CSDN 博客&#xff1a;C/C 内存管理详解 在软件开发过程中&#xff0c;内存管理是一个非常重要的环节。对于 C 和 C 这两种编程语言&#xff0c;它们都拥有独特的内存管理机制&#xff0c;理解这些机制对于编写高效、健壮的程序至关重要。本文将详细讲解 C/C 内存管理相关的内…...

表单制作代码,登录动画背景前端模板

炫酷动效登录页 引言 在网页设计中,按钮是用户交互的重要元素之一。一个炫酷的按钮特效不仅能提升用户体验,还能为网页增添独特的视觉吸引力。今天,我们将通过CSS来实现一个“表单制作代码,登录动画背景前端模板”。该素材呈现了数据符号排版显示出人形的动画效果,新颖有…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...