sort_values、sort 和 sorted 的区别与用法详解
sort_values
、sort
和 sorted
是 Python 中用于排序的工具,但它们的适用场景和行为有所不同。以下是它们的区别和用法详解:
1. sort_values
适用对象
Pandas 的 Series
或 DataFrame
。
功能
对 Pandas 数据结构中的值进行排序。
特点
-
专为 Pandas 设计。
-
支持按列排序(
DataFrame
)或按值排序(Series
)。 -
返回一个新的排序后的对象(默认不会修改原数据)。
示例
Python复制
import pandas as pd# 创建 DataFrame
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Score': [85, 92, 78]
})# 按 Score 列升序排序
sorted_df = df.sort_values(by='Score')
print(sorted_df)
# 输出:
# Name Score
# 2 Charlie 78
# 0 Alice 85
# 1 Bob 92
参数
-
by
:指定排序依据的列名(对于DataFrame
)。 -
ascending=True/False
:升序或降序,默认升序。 -
inplace=True/False
:是否修改原数据,默认不修改。
2. sort
适用对象
列表(list
)。
功能
对列表进行原地排序(直接修改原列表)。
特点
-
只适用于列表。
-
原地操作:会直接修改原列表,而不是返回新列表。
-
不支持复杂排序逻辑(如多列排序)。
示例
Python复制
numbers = [3, 1, 4, 2]
numbers.sort()
print(numbers) # 输出: [1, 2, 3, 4]
参数
-
key
:指定排序规则(如按长度排序字符串)。 -
reverse=True/False
:是否降序,默认升序。
注意
-
如果需要保留原列表不变,可以使用
sorted()
。
3. sorted
适用对象
任何可迭代对象(list
, tuple
, dict
, 等)。
功能
返回一个排序后的新对象,不会修改原数据。
特点
-
更通用,适用于所有可迭代对象。
-
返回的是新的排序结果,原数据保持不变。
-
支持自定义排序规则(通过
key
参数)。
示例
Python复制
# 对列表排序
numbers = [3, 1, 4, 2]
sorted_numbers = sorted(numbers)
print(sorted_numbers) # 输出: [1, 2, 3, 4]
print(numbers) # 原列表不变: [3, 1, 4, 2]# 对字典按键排序
data = {'b': 2, 'a': 1, 'c': 3}
sorted_data = sorted(data.items())
print(sorted_data) # 输出: [('a', 1), ('b', 2), ('c', 3)]
参数
-
iterable
:要排序的可迭代对象。 -
key
:指定排序规则(如按长度排序字符串)。 -
reverse=True/False
:是否降序,默认升序。
三者的区别总结
特性 | sort_values | sort | sorted |
---|---|---|---|
适用对象 | Pandas 的 Series 或 DataFrame | 列表(list ) | 任何可迭代对象 |
是否修改原数据 | 默认不修改(可通过 inplace=True 修改) | 直接修改原列表 | 不修改原数据 |
返回值 | 排序后的新对象 | 无返回值(原地修改) | 排序后的新对象 |
复杂排序支持 | 支持按列或多列排序 | 不支持复杂排序 | 支持自定义排序规则(通过 key ) |
性能 | 高效处理大规模数据 | 适合小规模列表 | 更通用,但可能稍慢 |
实际应用场景对比
1. Pandas 数据排序
-
使用
sort_values
,例如按某列排序 DataFrame。Python复制
df.sort_values(by='Score', ascending=False)
2. 列表排序
-
如果需要保留原列表,用
sorted
。Python复制
sorted_list = sorted([3, 1, 4, 2])
-
如果允许修改原列表,用
sort
。Python复制
numbers.sort()
3. 复杂排序规则
-
使用
sorted
或sort
的key
参数。Python复制
# 按字符串长度排序 words = ['apple', 'banana', 'kiwi'] sorted_words = sorted(words, key=len) print(sorted_words) # 输出: ['kiwi', 'apple', 'banana']
总结
-
sort_values
:Pandas 专用,适合处理表格数据。 -
sort
:列表专用,原地排序。 -
sorted
:通用性强,适合所有可迭代对象,且不修改原数据。
根据具体需求选择合适的工具,避免混淆!
相关文章:
sort_values、sort 和 sorted 的区别与用法详解
sort_values、sort 和 sorted 是 Python 中用于排序的工具,但它们的适用场景和行为有所不同。以下是它们的区别和用法详解: 1. sort_values 适用对象 Pandas 的 Series 或 DataFrame。 功能 对 Pandas 数据结构中的值进行排序。 特点 专为 Pandas 设…...
银行系统功能架构设计元模型
1. 元模型核心目标 规范性:定义功能模块的标准化描述方式,便于跨团队协作。可复用性:抽象通用组件,减少重复开发。可扩展性:支持未来业务创新和技术升级(如开放银行API集成)。2. 元模型层级结构 采用分层架构模式,分为以下核心层级: **(1) 业务功能层** …...
rabbitmq 延时队列
要使用 RabbitMQ Delayed Message Plugin 实现延时队列,首先需要确保插件已安装并启用。以下是实现延时队列的步骤和代码示例。 1. 安装 RabbitMQ Delayed Message Plugin 首先,确保你的 RabbitMQ 安装了 rabbitmq-delayed-message-exchange 插件。你可…...

idea + Docker + 阿里镜像服务打包部署
一、下载docker desktop软件 官网下载docker desktop,需要结合wsl使用 启动成功的画面(如果不是这个画面例如一直处理start或者是stop需要重新启动,不行就重启电脑) 打包成功的镜像在这里,如果频繁打包会导致磁盘空间被占满,需…...
Vue 3 零基础入门:从计数器应用开始你的工程化之旅 - 深入理解 Vue 3 响应式系统
引言 欢迎来到 Vue 3 + 现代前端工程化 系列技术博客! 本系列博客旨在通过每日构建一个小项目,帮助您深入学习 Vue 3 的各项核心特性,并掌握现代前端工程化的实践技能。 在接下来的系列文章中,我们将从零开始,由浅入深,逐步构建一系列实用的小型应用。 今天,作为本系列…...

批量将手机照片修改为一寸白底证件照的方法
生活中经常需要用到一寸白底证件照,但每次去照相馆拍摄既费时又麻烦。其实,利用手机拍照和批量证件照生成工具,就能轻松批量修改手机照片为一寸白底证件照。 首先,在电脑浏览器中打开【报名电子照助手】,找到“批量证件…...

【Docker基础】理解 Docker:本质、性质、架构与核心组件
文章目录 Docker 本质Docker 的引擎迭代Docker 和虚拟机的区别Docker 为什么比虚拟机资源利用率高,速度快?Docker 和 JVM 虚拟化的区别Docker 版本1. LXC (Linux Containers)2. libcontainer3. Moby4. docker-ce5. docker-ee总结: Docker 架构…...
LeetCodehot 力扣热题100 全排列
这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。 思路解析 在这段代码中,采用了 深度优先搜索(DFS) 和 回溯 的方法来生成所有的排列。 关键步骤…...
SQL笔记#数据更新
一、数据的插入(INSERT语句的使用方法) 1、什么是INSERT 首先通过CREATE TABLE语句创建表,但创建的表中没有数据;再通过INSERT语句向表中插入数据。 --创建表ProductIns CREATE TABLE ProductIns (product_id CHAR(4) NOT NULL,product_name VARCHAR(1…...
GCC 和 G++的基本使用
GCC 和 G 命令 GCC 和 G 命令GCC(GNU C 编译器)基本用法常用选项示例 G(GNU C 编译器)基本用法常用选项示例 GCC 与 G 的区别选择使用 GCC 还是 G C编译流程1. 预处理(Preprocessing)2. 编译(Co…...
Maven中一些基础知识点
早些时候只知道创建或者开发springboot项目时候,有一个叫pom.xml的文件可以用来管理项目所需的依赖/第三方工具。 索性稍微深入了解了一下,然后把自己认为重要的记录下来。 首先我们要引入新的依赖自然是在dependencies下写dependency,这个…...

论文阅读笔记:Deep Face Recognition: A Survey
论文阅读笔记:Deep Face Recognition: A Survey 1 介绍2 总览2.1 人脸识别组件2.1.1 人脸处理2.1.2 深度特征提取2.1.3 基于深度特征的人脸对比 3 网络结构和损失函数3.1 判别损失函数的演化3.1.1 基于欧式距离的损失3.1.2 基于角度/余弦边距的损失3.1.3 Softmax损失…...
JVM生产环境问题定位与解决实战(三):揭秘Java飞行记录器(JFR)的强大功能
提到飞行记录器,或许你的脑海中并未立刻浮现出清晰的画面,但一说起“黑匣子”,想必大多数人都能恍然大悟,知晓其重要性及用途。在航空领域,黑匣子作为不可或缺的设备,默默记录着飞行过程中的每一项关键数据…...
爬虫框架与库
爬虫框架与库是用于网络数据抓取的核心工具,帮助开发者高效地从网页中提取结构化数据。 Requests:用于发送HTTP请求。 BeautifulSoup:用于解析HTML和XML。 Scrapy:强大的爬虫框架,适合大规模爬取。 Selenium&#…...

PyTorch常用函数总结(持续更新)
本文主要记录自己在用 PyTorch复现经典模型 过程中遇到的一些函数及用法,以期对 常见PyTorch函数 更加熟练~ 官方Docs:PyTorch documentation — PyTorch 2.6 documentation 目录 数据层面 torch.sign(tensor) torch.tensor(np.eye(3)[y]) torch.on…...
代码异常(js中push)NO.4
1. 环境 Vue3,Element Plsu 2. 示例代码 const { updateBy, updateTime, ...curObj } form.valuecurObj.id props.tableData.length 1var newTableData props.tableData.push(curObj)updateTableData(newTableData)3. 情景描述 newTableData变成了整数&#…...

Anaconda 2025 最新版安装与Python环境配置指南(附官方下载链接)
一、软件定位与核心功能 Anaconda 2025 是Python/R数据科学集成开发平台,预装1500科学计算库,新增AI模型可视化调试、多环境GPU加速等特性。相较于传统Python安装,其优势包括: 环境隔离:通过conda工具实现多版本Pyth…...
Vue 中动态实现进度条
在 Vue 中动态实现进度条,基本上有两种常见的方法:直接通过 Vue 数据绑定控制样式,或者利用外部库来实现更复杂的功能。我们会深入探讨这两种方式,并且详细说明每种方法的实现步骤、优缺点以及使用场景。 1. 使用 Vue 数据绑定来…...
CSS滚动条原理与自定义样式指南,CSS滚动条样式失效,滚动条样式无效,-webkit-scrollbar无效,overflow不显示滚动条
滚动内容形成的必要条件 CSS Overflow属性解析 MDN官方文档-Overflow属性 菜鸟教程-Overflow属性 overflow 属性控制内容溢出元素框时在对应的元素区间内是否添加滚动条。 值描述visible默认值。内容不会被修剪,会呈现在元素框之外。hidden内容会被修剪…...
Three.js 入门(辅助、位移、父子关系、缩放旋转、响应式布局)
本篇主要学习内容 : 三维坐标系与辅助坐标系物体位移与父子元素物体的缩放与物体的旋转设置响应式画布与全屏控制 点赞 关注 收藏 学会了 本文使用 Three.js 的版本:171 基于 Vue3vite开发调试 1.三维坐标系与辅助坐标系 1.1) 导入three和轨道控制器 // 导入…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...