AF3 unify_template_features 函数解读
AlphaFold3 data_pipeline 模块的 unify_template_features 函数用于将多条链的模板特征整合为一个统一的 FeatureDict,以适应对多链复合物的处理。每条链的模板特征经过索引偏移处理后,拼接为一个完整的模板特征矩阵。
该方法的核心在于:
- 序列对齐:根据每条链的长度,将模板特征填充到一个统一的序列矩阵中。
- 链索引标记:为每条链的模板特征添加
template_chain_index,标识模板来源的链。 - 特征拼接:将所有链的模板特征按模板数量拼接,并生成最终的特征字典。
源代码:
def unify_template_features(template_feature_list: Sequence[FeatureDict]
) -> FeatureDict:out_dicts = []seq_lens = [fd["template_aatype"].shape[1] for fd in template_feature_list]for i, fd in enumerate(template_feature_list):out_dict = {}n_templates, n_res = fd["template_aatype"].shape[:2]for k, v in fd.items():seq_keys = ["template_aatype","template_all_atom_positions","template_all_atom_mask",]if k in seq_keys:new_shape = list(v.shape)assert (new_shape[1] == n_res)new_shape[1] = sum(seq_lens)new_array = np.zeros(new_shape, dtype=v.dtype)if k == "template_aatype":new_array[..., residue_constants.HHBLITS_AA_TO_ID['-']] = 1offset = sum(seq_lens[:i])new_array[:, offset:offset + seq_lens[i]] = vout_dict[k] = new_arrayelse:out_dict[k] = vchain_indices = np.array(n_templates * [i])out_dict["template_chain_index"] = chain_indicesif n_templates != 0:out_dicts.append(out相关文章:
AF3 unify_template_features 函数解读
AlphaFold3 data_pipeline 模块的 unify_template_features 函数用于将多条链的模板特征整合为一个统一的 FeatureDict,以适应对多链复合物的处理。每条链的模板特征经过索引偏移处理后,拼接为一个完整的模板特征矩阵。 该方法的核心在于: 序列对齐:根据每条链的长度,将模…...
FFmpeg.NET:.NET 平台上的音视频处理利器
FFmpeg.NET 是一个封装了 FFmpeg 功能的 .NET 库,能够方便地在 C# 项目中处理音视频文件。它支持多种操作,包括转码、剪辑、合并、分离音频等。 功能 解析元数据从视频生成缩略图使用以下参数将音频和视频转码为其他格式: 码率(…...
解决 Git 合并冲突:当本地修改与远程提交冲突时
目录 错误原因分析 解决方法 1. 暂存本地修改并合并(保留更改) 2. 丢弃本地修改(强制覆盖) 3. 暂存修改后合并(推荐:使用 git stash) 4. 选择性合并(手动处理冲突文件…...
SOME/IP-SD -- 协议英文原文讲解5
前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 5.1.2.5 S…...
spark的一些指令
一,复制和移动 1、复制文件 格式:cp 源文件 目标文件 示例:把file1.txt 复制一份得到file2.txt 。那么对应的命令就是:cp file1.txt file2.txt 2、复制目录 格式:cp -r 源文件 目标文件夹 示例:把目…...
Redis常用数据类型及其应用案例
文章目录 Redis常用数据类型及其应用案例1. 字符串(String)1.1 简介1.2 应用案例1.2.1 缓存1.2.2 计数器 2. 哈希(Hash)2.1 简介2.2 应用案例2.2.1 存储用户信息2.2.2 购物车 3. 列表(List)3.1 简介3.2 应用…...
kafka数据拉取和发送
文章目录 一、原生 KafkaConsumer1、pom文件引入kafka2、拉取数据3、发送数据二、在spring boot中使用@KafkaListener1、添加依赖2、application.yml3、消息拉取:consumer4、自定义ListenerContainerFactory5、消息发送:producer6、kafka通过clientId鉴权时的鉴权失败问题一、…...
LLM全栈框架完整分类清单(预训练+微调+工具链)
一、预训练框架 1. 大规模分布式训练框架 框架名称核心能力GitHub地址Megatron-LM3D并行训练、FlashAttention支持、Transformer架构优化(NVIDIA生态)NVIDIA/Megatron-LMDeepSpeedZeRO优化系列、3D并行、RLHF全流程支持(微软生态)…...
蓝桥杯备考:贪心算法之矩阵消除游戏
这道题是牛客上的一道题,它呢和我们之前的排座位游戏非常之相似,但是,排座位问题选择行和列是不会改变元素的值的,这道题呢每每选一行都会把这行或者这列清零,所以我们的策略就是先用二进制把选择所有行的情况全部枚举…...
【Matlab仿真】Matlab Function中如何使用静态变量?
背景 根据Simulink的运行机制,每个采样点会调用一次MATLAB Function的函数,两次调用之间,同一个变量的前次计算的终值如何传递到当前计算周期来?其实可以使用persistent变量实现函数退出和进入时内部变量值的保持。 persistent变…...
DeepSeek 提示词:高效的提示词设计
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
深入学习Java中的Lambda表达式
深入学习Java中的Lambda表达式 自Java 8引入以来,Lambda表达式彻底改变了Java的编程风格,让代码变得更加简洁、易读,尤其是在函数式编程的场景中。接下来,我们将深入探讨Lambda表达式的语法、原理以及实际应用,帮助你…...
1.2 AI 量化炒股的起源与发展
**定性价值**:AI量化炒股通过算法模型实现投资决策自动化,显著提升交易效率与风险控制能力,打破传统人工交易的主观性与延迟性,推动金融科技向智能化、数据驱动方向迭代,具有颠覆传统投资模式的战略意义。 **定量价值…...
计算机单位之详解——存储单位Byte 网络传输单位bps 视频码率单位bps
前言: 计算机里面单位有点复杂,容易混淆,很多时候混起来就容易概念不理解,包括一些小问题,比如说:为什么我买了1T硬盘,实际存在虚标。为什么所谓的千兆宽带,下载起来没有1G每秒&…...
IDEA关闭SpringBoot程序后仍然占用端口的排查与解决
IDEA关闭SpringBoot程序后仍然占用端口的排查与解决 问题描述 在使用 IntelliJ IDEA 开发 Spring Boot 应用时,有时即使关闭了应用,程序仍然占用端口(例如:4001 端口)。这会导致重新启动应用时出现端口被占用的错误&a…...
deepseek清华大学第二版 如何获取 DeepSeek如何赋能职场应用 PDF文档 电子档(附下载)
deepseek清华大学第二版 DeepSeek如何赋能职场 pdf文件完整版下载 https://pan.baidu.com/s/1aQcNS8UleMldcoH0Jc6C6A?pwd1234 提取码: 1234 或 https://pan.quark.cn/s/3ee62050a2ac...
【python随手记】——读取文本文件内容转换为json格式
文章目录 前言一、TXT文件转换为JSON数组1.txt文件内容2.python代码3.输出结果 二、TXT文件转换为JSON对象1.txt文件2.python代码3.输出结果 前言 场景:用于读取包含空格分隔数据的TXT文件,并将其转换为结构化JSON文件 一、TXT文件转换为JSON数组 1.tx…...
k8s集群3主5从高可用架构(kubeadm方式安装k8s)
关键步骤说明 环境准备阶段 系统更新:所有节点执行yum/apt update确保软件包最新时间同步:通过ntpdate time.windows.com或部署NTP服务器网络规划:明确划分Service网段(默认10.96.0.0/12)和Pod网段(如Flann…...
基于 sklearn 的均值偏移聚类算法的应用
基于 sklearn 的均值偏移聚类算法的应用 在机器学习和数据挖掘中,聚类算法是一类非常重要的无监督学习方法。它的目的是将数据集中的数据点划分为若干个类,使得同一类的样本点彼此相似,而不同类的样本点相互之间差异较大。均值偏移聚类&…...
三、大模型微调的多种方法与应用场景
详解大模型微调的多种方法与应用场景 随着大模型的不断发展,如何有效地微调这些庞大的预训练模型以适应特定任务成为了研究和应用中的一个重要问题。大模型微调不仅能够提高任务性能,还能在不同的业务需求中提升模型的适应性。在本文中,我们…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
