当前位置: 首页 > news >正文

AF3 unify_template_features 函数解读

AlphaFold3 data_pipeline 模块的 unify_template_features 函数用于将多条链的模板特征整合为一个统一的 FeatureDict,以适应对多链复合物的处理。每条链的模板特征经过索引偏移处理后,拼接为一个完整的模板特征矩阵。

该方法的核心在于:

  1. 序列对齐:根据每条链的长度,将模板特征填充到一个统一的序列矩阵中。
  2. 链索引标记:为每条链的模板特征添加 template_chain_index,标识模板来源的链。
  3. 特征拼接:将所有链的模板特征按模板数量拼接,并生成最终的特征字典。

源代码:

def unify_template_features(template_feature_list: Sequence[FeatureDict]
) -> FeatureDict:out_dicts = []seq_lens = [fd["template_aatype"].shape[1] for fd in template_feature_list]for i, fd in enumerate(template_feature_list):out_dict = {}n_templates, n_res = fd["template_aatype"].shape[:2]for k, v in fd.items():seq_keys = ["template_aatype","template_all_atom_positions","template_all_atom_mask",]if k in seq_keys:new_shape = list(v.shape)assert (new_shape[1] == n_res)new_shape[1] = sum(seq_lens)new_array = np.zeros(new_shape, dtype=v.dtype)if k == "template_aatype":new_array[..., residue_constants.HHBLITS_AA_TO_ID['-']] = 1offset = sum(seq_lens[:i])new_array[:, offset:offset + seq_lens[i]] = vout_dict[k] = new_arrayelse:out_dict[k] = vchain_indices = np.array(n_templates * [i])out_dict["template_chain_index"] = chain_indicesif n_templates != 0:out_dicts.append(out

相关文章:

AF3 unify_template_features 函数解读

AlphaFold3 data_pipeline 模块的 unify_template_features 函数用于将多条链的模板特征整合为一个统一的 FeatureDict,以适应对多链复合物的处理。每条链的模板特征经过索引偏移处理后,拼接为一个完整的模板特征矩阵。 该方法的核心在于: 序列对齐:根据每条链的长度,将模…...

FFmpeg.NET:.NET 平台上的音视频处理利器

FFmpeg.NET 是一个封装了 FFmpeg 功能的 .NET 库,能够方便地在 C# 项目中处理音视频文件。它支持多种操作,包括转码、剪辑、合并、分离音频等。 功能 解析元数据从视频生成缩略图使用以下参数将音频和视频转码为其他格式: 码率(…...

解决 Git 合并冲突:当本地修改与远程提交冲突时

目录 错误原因分析 解决方法 1. 暂存本地修改并合并(保留更改) 2. 丢弃本地修改(强制覆盖) 3. 暂存修改后合并(推荐:使用 git stash) 4. 选择性合并(手动处理冲突文件&#xf…...

SOME/IP-SD -- 协议英文原文讲解5

前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 5.1.2.5 S…...

spark的一些指令

一,复制和移动 1、复制文件 格式:cp 源文件 目标文件 示例:把file1.txt 复制一份得到file2.txt 。那么对应的命令就是:cp file1.txt file2.txt 2、复制目录 格式:cp -r 源文件 目标文件夹 示例:把目…...

Redis常用数据类型及其应用案例

文章目录 Redis常用数据类型及其应用案例1. 字符串(String)1.1 简介1.2 应用案例1.2.1 缓存1.2.2 计数器 2. 哈希(Hash)2.1 简介2.2 应用案例2.2.1 存储用户信息2.2.2 购物车 3. 列表(List)3.1 简介3.2 应用…...

kafka数据拉取和发送

文章目录 一、原生 KafkaConsumer1、pom文件引入kafka2、拉取数据3、发送数据二、在spring boot中使用@KafkaListener1、添加依赖2、application.yml3、消息拉取:consumer4、自定义ListenerContainerFactory5、消息发送:producer6、kafka通过clientId鉴权时的鉴权失败问题一、…...

LLM全栈框架完整分类清单(预训练+微调+工具链)

一、预训练框架 1. 大规模分布式训练框架 框架名称核心能力GitHub地址Megatron-LM3D并行训练、FlashAttention支持、Transformer架构优化(NVIDIA生态)NVIDIA/Megatron-LMDeepSpeedZeRO优化系列、3D并行、RLHF全流程支持(微软生态&#xff09…...

蓝桥杯备考:贪心算法之矩阵消除游戏

这道题是牛客上的一道题,它呢和我们之前的排座位游戏非常之相似,但是,排座位问题选择行和列是不会改变元素的值的,这道题呢每每选一行都会把这行或者这列清零,所以我们的策略就是先用二进制把选择所有行的情况全部枚举…...

【Matlab仿真】Matlab Function中如何使用静态变量?

背景 根据Simulink的运行机制,每个采样点会调用一次MATLAB Function的函数,两次调用之间,同一个变量的前次计算的终值如何传递到当前计算周期来?其实可以使用persistent变量实现函数退出和进入时内部变量值的保持。 persistent变…...

DeepSeek 提示词:高效的提示词设计

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...

深入学习Java中的Lambda表达式

深入学习Java中的Lambda表达式 自Java 8引入以来,Lambda表达式彻底改变了Java的编程风格,让代码变得更加简洁、易读,尤其是在函数式编程的场景中。接下来,我们将深入探讨Lambda表达式的语法、原理以及实际应用,帮助你…...

1.2 AI 量化炒股的起源与发展

**定性价值**:AI量化炒股通过算法模型实现投资决策自动化,显著提升交易效率与风险控制能力,打破传统人工交易的主观性与延迟性,推动金融科技向智能化、数据驱动方向迭代,具有颠覆传统投资模式的战略意义。 **定量价值…...

计算机单位之详解——存储单位Byte 网络传输单位bps 视频码率单位bps

前言: 计算机里面单位有点复杂,容易混淆,很多时候混起来就容易概念不理解,包括一些小问题,比如说:为什么我买了1T硬盘,实际存在虚标。为什么所谓的千兆宽带,下载起来没有1G每秒&…...

IDEA关闭SpringBoot程序后仍然占用端口的排查与解决

IDEA关闭SpringBoot程序后仍然占用端口的排查与解决 问题描述 在使用 IntelliJ IDEA 开发 Spring Boot 应用时,有时即使关闭了应用,程序仍然占用端口(例如:4001 端口)。这会导致重新启动应用时出现端口被占用的错误&a…...

deepseek清华大学第二版 如何获取 DeepSeek如何赋能职场应用 PDF文档 电子档(附下载)

deepseek清华大学第二版 DeepSeek如何赋能职场 pdf文件完整版下载 https://pan.baidu.com/s/1aQcNS8UleMldcoH0Jc6C6A?pwd1234 提取码: 1234 或 https://pan.quark.cn/s/3ee62050a2ac...

【python随手记】——读取文本文件内容转换为json格式

文章目录 前言一、TXT文件转换为JSON数组1.txt文件内容2.python代码3.输出结果 二、TXT文件转换为JSON对象1.txt文件2.python代码3.输出结果 前言 场景:用于读取包含空格分隔数据的TXT文件,并将其转换为结构化JSON文件 一、TXT文件转换为JSON数组 1.tx…...

k8s集群3主5从高可用架构(kubeadm方式安装k8s)

关键步骤说明 环境准备阶段 系统更新:所有节点执行yum/apt update确保软件包最新时间同步:通过ntpdate time.windows.com或部署NTP服务器网络规划:明确划分Service网段(默认10.96.0.0/12)和Pod网段(如Flann…...

基于 sklearn 的均值偏移聚类算法的应用

基于 sklearn 的均值偏移聚类算法的应用 在机器学习和数据挖掘中,聚类算法是一类非常重要的无监督学习方法。它的目的是将数据集中的数据点划分为若干个类,使得同一类的样本点彼此相似,而不同类的样本点相互之间差异较大。均值偏移聚类&…...

三、大模型微调的多种方法与应用场景

详解大模型微调的多种方法与应用场景 随着大模型的不断发展,如何有效地微调这些庞大的预训练模型以适应特定任务成为了研究和应用中的一个重要问题。大模型微调不仅能够提高任务性能,还能在不同的业务需求中提升模型的适应性。在本文中,我们…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

12.找到字符串中所有字母异位词

🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

dify打造数据可视化图表

一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...