AF3 unify_template_features 函数解读
AlphaFold3 data_pipeline 模块的 unify_template_features 函数用于将多条链的模板特征整合为一个统一的 FeatureDict,以适应对多链复合物的处理。每条链的模板特征经过索引偏移处理后,拼接为一个完整的模板特征矩阵。
该方法的核心在于:
- 序列对齐:根据每条链的长度,将模板特征填充到一个统一的序列矩阵中。
- 链索引标记:为每条链的模板特征添加
template_chain_index,标识模板来源的链。 - 特征拼接:将所有链的模板特征按模板数量拼接,并生成最终的特征字典。
源代码:
def unify_template_features(template_feature_list: Sequence[FeatureDict]
) -> FeatureDict:out_dicts = []seq_lens = [fd["template_aatype"].shape[1] for fd in template_feature_list]for i, fd in enumerate(template_feature_list):out_dict = {}n_templates, n_res = fd["template_aatype"].shape[:2]for k, v in fd.items():seq_keys = ["template_aatype","template_all_atom_positions","template_all_atom_mask",]if k in seq_keys:new_shape = list(v.shape)assert (new_shape[1] == n_res)new_shape[1] = sum(seq_lens)new_array = np.zeros(new_shape, dtype=v.dtype)if k == "template_aatype":new_array[..., residue_constants.HHBLITS_AA_TO_ID['-']] = 1offset = sum(seq_lens[:i])new_array[:, offset:offset + seq_lens[i]] = vout_dict[k] = new_arrayelse:out_dict[k] = vchain_indices = np.array(n_templates * [i])out_dict["template_chain_index"] = chain_indicesif n_templates != 0:out_dicts.append(out相关文章:
AF3 unify_template_features 函数解读
AlphaFold3 data_pipeline 模块的 unify_template_features 函数用于将多条链的模板特征整合为一个统一的 FeatureDict,以适应对多链复合物的处理。每条链的模板特征经过索引偏移处理后,拼接为一个完整的模板特征矩阵。 该方法的核心在于: 序列对齐:根据每条链的长度,将模…...
FFmpeg.NET:.NET 平台上的音视频处理利器
FFmpeg.NET 是一个封装了 FFmpeg 功能的 .NET 库,能够方便地在 C# 项目中处理音视频文件。它支持多种操作,包括转码、剪辑、合并、分离音频等。 功能 解析元数据从视频生成缩略图使用以下参数将音频和视频转码为其他格式: 码率(…...
解决 Git 合并冲突:当本地修改与远程提交冲突时
目录 错误原因分析 解决方法 1. 暂存本地修改并合并(保留更改) 2. 丢弃本地修改(强制覆盖) 3. 暂存修改后合并(推荐:使用 git stash) 4. 选择性合并(手动处理冲突文件…...
SOME/IP-SD -- 协议英文原文讲解5
前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 5.1.2.5 S…...
spark的一些指令
一,复制和移动 1、复制文件 格式:cp 源文件 目标文件 示例:把file1.txt 复制一份得到file2.txt 。那么对应的命令就是:cp file1.txt file2.txt 2、复制目录 格式:cp -r 源文件 目标文件夹 示例:把目…...
Redis常用数据类型及其应用案例
文章目录 Redis常用数据类型及其应用案例1. 字符串(String)1.1 简介1.2 应用案例1.2.1 缓存1.2.2 计数器 2. 哈希(Hash)2.1 简介2.2 应用案例2.2.1 存储用户信息2.2.2 购物车 3. 列表(List)3.1 简介3.2 应用…...
kafka数据拉取和发送
文章目录 一、原生 KafkaConsumer1、pom文件引入kafka2、拉取数据3、发送数据二、在spring boot中使用@KafkaListener1、添加依赖2、application.yml3、消息拉取:consumer4、自定义ListenerContainerFactory5、消息发送:producer6、kafka通过clientId鉴权时的鉴权失败问题一、…...
LLM全栈框架完整分类清单(预训练+微调+工具链)
一、预训练框架 1. 大规模分布式训练框架 框架名称核心能力GitHub地址Megatron-LM3D并行训练、FlashAttention支持、Transformer架构优化(NVIDIA生态)NVIDIA/Megatron-LMDeepSpeedZeRO优化系列、3D并行、RLHF全流程支持(微软生态)…...
蓝桥杯备考:贪心算法之矩阵消除游戏
这道题是牛客上的一道题,它呢和我们之前的排座位游戏非常之相似,但是,排座位问题选择行和列是不会改变元素的值的,这道题呢每每选一行都会把这行或者这列清零,所以我们的策略就是先用二进制把选择所有行的情况全部枚举…...
【Matlab仿真】Matlab Function中如何使用静态变量?
背景 根据Simulink的运行机制,每个采样点会调用一次MATLAB Function的函数,两次调用之间,同一个变量的前次计算的终值如何传递到当前计算周期来?其实可以使用persistent变量实现函数退出和进入时内部变量值的保持。 persistent变…...
DeepSeek 提示词:高效的提示词设计
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
深入学习Java中的Lambda表达式
深入学习Java中的Lambda表达式 自Java 8引入以来,Lambda表达式彻底改变了Java的编程风格,让代码变得更加简洁、易读,尤其是在函数式编程的场景中。接下来,我们将深入探讨Lambda表达式的语法、原理以及实际应用,帮助你…...
1.2 AI 量化炒股的起源与发展
**定性价值**:AI量化炒股通过算法模型实现投资决策自动化,显著提升交易效率与风险控制能力,打破传统人工交易的主观性与延迟性,推动金融科技向智能化、数据驱动方向迭代,具有颠覆传统投资模式的战略意义。 **定量价值…...
计算机单位之详解——存储单位Byte 网络传输单位bps 视频码率单位bps
前言: 计算机里面单位有点复杂,容易混淆,很多时候混起来就容易概念不理解,包括一些小问题,比如说:为什么我买了1T硬盘,实际存在虚标。为什么所谓的千兆宽带,下载起来没有1G每秒&…...
IDEA关闭SpringBoot程序后仍然占用端口的排查与解决
IDEA关闭SpringBoot程序后仍然占用端口的排查与解决 问题描述 在使用 IntelliJ IDEA 开发 Spring Boot 应用时,有时即使关闭了应用,程序仍然占用端口(例如:4001 端口)。这会导致重新启动应用时出现端口被占用的错误&a…...
deepseek清华大学第二版 如何获取 DeepSeek如何赋能职场应用 PDF文档 电子档(附下载)
deepseek清华大学第二版 DeepSeek如何赋能职场 pdf文件完整版下载 https://pan.baidu.com/s/1aQcNS8UleMldcoH0Jc6C6A?pwd1234 提取码: 1234 或 https://pan.quark.cn/s/3ee62050a2ac...
【python随手记】——读取文本文件内容转换为json格式
文章目录 前言一、TXT文件转换为JSON数组1.txt文件内容2.python代码3.输出结果 二、TXT文件转换为JSON对象1.txt文件2.python代码3.输出结果 前言 场景:用于读取包含空格分隔数据的TXT文件,并将其转换为结构化JSON文件 一、TXT文件转换为JSON数组 1.tx…...
k8s集群3主5从高可用架构(kubeadm方式安装k8s)
关键步骤说明 环境准备阶段 系统更新:所有节点执行yum/apt update确保软件包最新时间同步:通过ntpdate time.windows.com或部署NTP服务器网络规划:明确划分Service网段(默认10.96.0.0/12)和Pod网段(如Flann…...
基于 sklearn 的均值偏移聚类算法的应用
基于 sklearn 的均值偏移聚类算法的应用 在机器学习和数据挖掘中,聚类算法是一类非常重要的无监督学习方法。它的目的是将数据集中的数据点划分为若干个类,使得同一类的样本点彼此相似,而不同类的样本点相互之间差异较大。均值偏移聚类&…...
三、大模型微调的多种方法与应用场景
详解大模型微调的多种方法与应用场景 随着大模型的不断发展,如何有效地微调这些庞大的预训练模型以适应特定任务成为了研究和应用中的一个重要问题。大模型微调不仅能够提高任务性能,还能在不同的业务需求中提升模型的适应性。在本文中,我们…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
