当前位置: 首页 > news >正文

【DeepSeek】-macOS本地终端部署后运行DeepSeek如何分析图片

【DeepSeek】-macOS本地终端部署后运行DeepSeek如何分析图片

根据您的需求,目前需要了解以下几个关键点及分步解决方案:

---

一、现状分析
1. Ollama 的限制:
   - 目前Ollama主要面向文本大模型,原生不支持直接上传/处理图片
   - 需要通过间接方式将图片转换为模型可接受的输入格式

2. DeepSeek模型的限制:
   - 标准DeepSeek大模型为纯文本模型,不具备图像处理能力
   - 若需图像分析需使用多模态版本(需确认是否已部署)

---

二、解决方案(2种思路)

方案一:使用多模态模型(推荐)
1. 安装多模态模型:

   ```bash
   # 安装支持多模态的模型(如LLaVA)
   ollama run llava
   ```

2. 通过API发送图片:
   ```bash
   # 将图片转换为base64编码
   base64 -i your_image.jpg > image.txt

   # 使用curl发送请求(示例)
   curl http://localhost:11434/api/generate -d '{
     "model": "llava",
     "prompt": "描述这张图片",
     "images": ["'$(base64 -w0 your_image.jpg)'"]
   }'
   ```

方案二:文本化处理(适用于纯文本模型)
1. 使用OCR提取图片文字:

   ```bash
   # 安装tesseract OCR引擎
   brew install tesseract

   # 提取图片文字
   tesseract your_image.jpg output -l chi_sim+eng && cat output.txt
   ```

2. 将文本输入模型:
   ```bash
   ollama run deepseek-chat "请分析以下文本内容:$(cat output.txt)"
   ```

---

三、进阶方案(开发自定义处理)
1. 创建Python处理脚本:

   ```python
   # image_processor.py
   import base64
   import requests

   with open("your_image.jpg", "rb") as img_file:
       img_b64 = base64.b64encode(img_file.read()).decode('utf-8')

   response = requests.post(
       "http://localhost:11434/api/generate",
       json={
           "model": "llava",
           "prompt": "详细描述这张图片",
           "images": [img_b64],
           "stream": False
       }
   )
   print(response.json()["response"])
   ```

2. 执行脚本:
   ```bash
   python3 image_processor.py
   ```

---

四、注意事项
1. 模型兼容性:

   - 确认使用的模型支持多模态输入(如LLaVA约13GB)
   - 纯文本模型需配合OCR预处理

2. 性能要求:
   - M1/M2芯片建议至少16GB内存
   - 图片分辨率建议不超过1024x1024

3. 替代方案:
   ```bash
   # 使用开源视觉API(示例)
   docker run -p 5000:5000 openvisionapi/ova
   # 获取分析结果后输入本地模型
   ```

---

建议优先尝试方案一,
如需处理中文图片内容,
可安装中文OCR语言包:
```bash
brew install tesseract-lang
# 中文简体包
brew install tesseract-lang/chi_sim
```

相关文章:

【DeepSeek】-macOS本地终端部署后运行DeepSeek如何分析图片

【DeepSeek】-macOS本地终端部署后运行DeepSeek如何分析图片 根据您的需求,目前需要了解以下几个关键点及分步解决方案: --- 一、现状分析 1. Ollama 的限制: - 目前Ollama主要面向文本大模型,原生不支持直接上传/处理图片 …...

使用 pytest-mock 进行 Python 高级单元测试与模拟

一、单元测试与模拟的意义 在软件开发中,单元测试用于验证代码逻辑的正确性。但实际项目中,代码常依赖外部服务(如数据库、API、文件系统)。直接测试这些依赖会导致: 测试速度变慢测试结果不可控产生副作用(如真实发送邮件)模拟(Mocking) 技术通过创建虚拟对象替代真…...

lowagie(itext)老版本手绘PDF,包含页码、水印、图片、复选框、复杂行列合并等。

入口类:exportPdf ​ package xcsy.qms.webapi.service;import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.JSONObject; import com.alibaba.nacos.common.utils.StringUtils; import com.ibm.icu.text.RuleBasedNumberFormat; import com.lowa…...

《Linux 指令集:开启极客世界的钥匙_01》

一、命令行基础 (一)命令行提示符解析 当前用户:显示当前登录的用户名。例如,当前用户为 “ubuntu_user”,则在命令行提示符中会显示该用户名。 连接符:通常是 “”,用于分隔用户名和计算机名…...

【Android】用 chrome://inspect/#devices 调试H5页面

通常做Android开发的过程中,不可避免的需要遇到去与H5交互,甚至有时候需要去调试H5的信息。 这里分享一下Android工程里如何调试H5页面信息: 直接在浏览器地址栏输入 : chrome://inspect/#devices 直接连接手机usb,打开开发者模式…...

Deepseek 实战全攻略,领航科技应用的深度探索之旅

想玩转 Deepseek?这攻略别错过!先带你了解它的基本原理,教你搭建运行环境。接着给出自然语言处理、智能客服等应用场景的实操方法与代码。还分享模型微调、优化技巧,结合案例加深理解,让你全面掌握,探索科技…...

《论区块链技术及应用》审题技巧 - 系统架构设计师

区块链技术及应用论题写作框架 一、考点概述 本论题“区块链技术及应用”主要考察软件测试工程师对区块链技术的理解及其在软件项目中的实际应用能力。论题涵盖了多个关键方面,首先要求考生对区块链技术有全面的认识,包括但不限于其作为分布式记账技术…...

ROS2 强化学习:案例与代码实战

一、引言 在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(Robot Operating System 2)作为新一代机器人操作系统,具有…...

【Python模块】——pymysql

pymysql是python操作mysql的标准库,可以通过pip install快速导入pymysql包操作数据库 使用pymysql操作mysql 简单demo import pymysql connect pymysql.connect(host"localhost",port3306,user"root",password"root",database&quo…...

【我的Android进阶之旅】Android Studio SDK Update Site 国内的腾讯云镜像配置指南

一、腾讯云的镜像 https://mirrors.cloud.tencent.com/AndroidSDK/ 二、 打开 Android Studio‌的SDK Manager 路径:Tools–>SDK Manager 在右侧找到 SDK Update Sites 列表‌‌,添加如下链接,像下面一样,一个一个添加 将下面几个链接都加上去 https:...

springboot实现多文件上传

springboot实现多文件上传 代码 package com.sh.system.controller;import org.springframework.http.HttpStatus; import org.springframework.http.ResponseEntity; import org.springframework.util.StringUtils; import org.springframework.web.bind.annotation.PostMap…...

Webpack打包优化

在使用 Webpack 打包项目时,随着项目规模的扩大,构建时间和打包产物的体积可能会逐渐增加。为了提高构建性能和减小打包产物的体积,可以采取以下几种 Webpack 打包优化 的方法。 1. 使用 mode 配置 Webpack 通过 mode 配置来指定构建模式。…...

浅谈HTTP及HTTPS协议

1.什么是HTTP? HTTP全称是超文本传输协议,是一种基于TCP协议的应用非常广泛的应用层协议。 1.1常见应用场景 一.浏览器与服务器之间的交互。 二.手机和服务器之间通信。 三。多个服务器之间的通信。 2.HTTP请求详解 2.1请求报文格式 我们首先看一下…...

GTID的基本概念

1.1 GTID的基本概念 1.1.1 GTID的作用 GTID的全称为Global Transaction Identifier,是MySQL的一个强大的特性。MySQL会为每一个DML/DDL操作都增加一个唯一标记,叫作GTID(每个事务一个GTID)。这个标记在整个复制环境中都是唯一的…...

.NET Core MVC IHttpActionResult 设置Headers

最近碰到调用我的方法要求返回一个代码值,但是要求是不放在返回实体里,而是放在返回的Headers上 本来返回我是直接用 return Json(res) 这种封装的方法特别简单,但是没有发现设置headers的地方 查询过之后不得已换了个返回 //原来方式 //…...

数据结构与算法面试专题——桶排序

引入 桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。 桶排序…...

深度学习奠基作 AlexNet 论文阅读笔记(2025.2.25)

文章目录 训练数据集数据预处理神经网络模型模型训练正则化技术模型性能其他补充 训练数据集 模型主要使用2010年和2012年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)提供的 ImageNet 的子集进行训练,这些子集包含120万张图像。最终&#xff…...

MongoDB 数据库简介

MongoDB 数据库简介 引言 随着互联网技术的飞速发展,数据已经成为企业的重要资产。为了高效地管理和处理这些数据,数据库技术应运而生。MongoDB作为一种流行的NoSQL数据库,因其灵活的数据模型和高效的数据处理能力,受到了广泛的关注。本文将为您详细介绍MongoDB的基本概念…...

Transformer LLaMA

一、Transformer Transformer:一种基于自注意力机制的神经网络结构,通过并行计算和多层特征抽取,有效解决了长序列依赖问题,实现了在自然语言处理等领域的突破。 Transformer 架构摆脱了RNNs,完全依靠 Attention的优…...

【DeepSeek开源:会带来多大的影响】

DeepSeek 开源,震撼登场对云计算行业的冲击 巨头云厂商的新机遇 DeepSeek 开源后,为云计算行业带来了巨大的变革,尤其是为巨头云厂商创造了新的发展机遇。以阿里云为例,它作为云计算行业的领军者,与 DeepSeek 的合作…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC&#xf…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统

核心速览 研究背景 ​​研究问题​​:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RA…...