sql server笔记
创建数据库
use master
gocreate database stuuuuu//删除数据库if db_id ('$$$') is not nullDrop database [$$$]
go//新建表USE [studyTest]
GOSET ANSI_NULLS ON
GOSET QUOTED_IDENTIFIER ON
GOCREATE TABLE [dbo].[Table_1]([id] [int] NULL,[name] [varchar](10) NULL
) ON [PRIMARY]
GO//删除表
USE [studyTest]
GOIF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[Table_1]') AND type in (N'U'))
DROP TABLE [dbo].[Table_1]
GO
插入 insert into aaa ( name ) values ('asd')
/* 更新*/
update aaa set name='我是' where id=1
/* 删除*/
delete aaa where id =1
go
/*条件查询*/
select id as '标识',
name as '姓名',
score as 分数
from aaa where score >20 and score <90
/* score >20 and score <90 可以替换成between 50 and 90
不为空条件 where score is not null*/
/*百分比查询数据*/
select top(50) percent id as '标识',
name as '姓名',
score as 分数
from aaa where score >20 and score <90
caseWhen判断
select name,score ,case when score >20 and score<50 then '不及格'
when score>60 then '好'
else '零'
end as '等级'
from aaa order by score asc
// in
select name,score from aaa where id in (2)
// like
select name,score from aaa where name like 'a%'
// with
with tt as (select name,score from aaa where name like 'a%')
select * from tt
//distinct
select distinct id from aaa
//order by 升序 asc 降序 desc
select *from aaa order by score asc
//聚合group by
select name,sum(score) scoresum from aaa group by name
//左连接 left inner right full join
select *from Company c left join SysUser s on c.Id=s.CompanyId and .....
// union unionall 把结构相同的表合并,union可以去重, unionall 不会去重
//递归查询
with con(id,meanname,parentid,le) as
(
select id,meanname,parentid,le from meaninfo where id=1
union all
select a.id .... , le = le+1 from meaninfo a join con a.parent = con.id
)
select id,meanname,parentid,le from con
数据类型





date 年月日3byte datetime 年月日时分秒8byte time 时分秒5byte






约束
主键约束,外键约束 ,非空约束,唯一约束,检查约束
存储过程




相关文章:
sql server笔记
创建数据库 use master gocreate database stuuuuu//删除数据库if db_id ($$$) is not nullDrop database [$$$] go//新建表USE [studyTest] GOSET ANSI_NULLS ON GOSET QUOTED_IDENTIFIER ON GOCREATE TABLE [dbo].[Table_1]([id] [int] NULL,[name] [varchar](10) NULL ) ON…...
AI Video Composer:基于Qwen2.5-Coder的简易开源视频创作利器
系列篇章💥 No.文章1短视频开源项目MoneyPrinterTurbo:AI副业搞起来,视频制作更轻松!2【FunClip】阿里开源AI视频剪辑神器:全面体验与教程3Tailor:免费开源 AI 视频神器,创作者必备利器4Clappe…...
AI数字人开发,引领科技新潮流
引言 随着人工智能技术的迅猛发展,AI 数字人在影视娱乐、客户服务、教育及医疗等多个领域展现出巨大的潜力。本文旨在为开发者提供一份详细的 AI 数字人系统开发指南,涵盖从基础架构到实现细节的各个方面,包括人物建模、动作生成、语音交互、…...
VoIP之音频3A技术
音频3A技术是改善语音通话质量的三种关键技术的简称,包括声学回声消除(Acoustic Echo Cancellation, AEC)、自动增益控制(Automatic Gain Control, AGC)、自噪声抑制(Automatic Noise Suppression, ANS&…...
[原创]openwebui解决searxng通过接口请求不成功问题
openwebui 对接 searxng 时 无法查询到联网信息,使用bing搜索,每次返回json是正常的 神秘代码: http://172.30.254.200:8080/search?q北京市天气&formatjson&languagezh&time_range&safesearch0&languagezh&locale…...
Jmeter聚合报告导出log文档,Jmeter聚合报告导出到CSV
Jmeter聚合报告导出log文档 在Filename中输入 EKS_perf_log\\${type}_log\\${__P(UNIQUEID,${__time(YMDHMS)})}\all-graph-results-log.csv 可以得到执行的log,文件夹包含时间戳 Jmeter聚合报告导出到CSV 点击Save Table Data,保存到CSV文件中...
mysqldump 参数详解
mysqldump 是一个用于备份 MySQL 数据库的工具。它可以生成一组 SQL 语句,这些语句可以用来重现原始数据库对象定义和表数据。以下是一些常用的 mysqldump 参数及其详细解释: 常用参数 基本参数 --host=host_name, -h host_name: 指定 MySQL 数据库主机地址,默认为 localh…...
DeepSeek R1 简易指南:架构、本地部署和硬件要求
DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(Reinforcement Learning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。 …...
基于 MySQL 数据库对三级视图(用户视图、DBA视图、内部视图)的详细解释
基于 MySQL 数据库对三级视图(用户视图、DBA视图、内部视图)的详细解释,结合理论与实际操作说明: 一、三级视图核心概念 数据库的三级视图是 ANSI/SPARC 体系结构的核心思想,MySQL 的实现逻辑如下: …...
[Web 信息收集] Web 信息收集 — 手动收集 IP 信息
关注这个专栏的其他相关笔记:[Web 安全] Web 安全攻防 - 学习手册-CSDN博客 0x01:通过 DNS 服务获取域名对应 IP DNS 即域名系统,用于将域名与 IP 地址相互映射,方便用户访问互联网。对于域名到 IP 的转换过程则可以参考下面这篇…...
跨AWS账户共享SQS队列以实现消息传递
在现代分布式系统中,不同的服务和组件通常需要进行通信和协作。Amazon Simple Queue Service (SQS)提供了一种可靠、可扩展且完全托管的消息队列服务,可以帮助您构建分布式应用程序。本文将介绍如何在一个AWS账户(账户A)中创建SQS队列,并授权另一个AWS账户(账户B)中的用户和角色…...
DeepSeek 202502 开源周合集
DeepSeek 本周的开源项目体现了其在 AI 技术栈中的深厚积累,从硬件协同优化(FlashMLA)、通信库(DeepEP)、核心计算(DeepGEMM)到推理模型(DeepSeek-R1),覆盖了…...
springai系列(二)从0开始搭建和接入azure-openai实现智能问答
文章目录 前言1.从0开始搭建项目2.进入微软openai申请key3.配置application.yaml4.编写controller5.测试源码下载地址总结 前言 之前使用openai的官网的api需要科学上网,但是我们可以使用其他的代理间接实现使用chatgpt的相关模型,解决这个问题。比如:本…...
Apache部署Vue操作手册(SSL部分)
1. Apache配置(windows版本) 1.1 httpd.conf 配置 找到apache配置文件 httpd.conf,将下面两条文件的注释#去掉,如果没搜到就新增这两条配置。一个是开启ssl模块,一个是引用专门的ssl配置文件。 LoadModule ssl_modu…...
人类驾驶的人脑两种判断模式(反射和预判)-->自动驾驶两种AI模式
一种模式是直觉模式,判断是基于条件反射,视觉感知 触发到 直接条件反射(从经历中沉淀形成的神经信息闭环),类似现在自动驾驶技术的传统AI模式。 另一种模式是物理时空图式推理模式,判断是基于预判预测&…...
Docker和K8S中pod、services、container的介绍和关系
在容器化技术中,Docker、Kubernetes(K8S)、Pod、Service 和 Container 是核心概念,理解它们的关系对构建和管理现代应用至关重要。以下是详细的分步解释: 1. 核心概念定义 (1) Container(容器)…...
【uniapp】在UniApp中实现持久化存储:安卓--生成写入数据为jsontxt
在移动应用开发中,数据存储是一个至关重要的环节。对于使用UniApp开发的Android应用来说,缓存(Cache)是一种常见的数据存储方式,它能够提高应用的性能和用户体验。然而,缓存数据在用户清除缓存或清除应用数…...
DeepSeek-R1本地部署保姆级教程
一、DeepSeek-R1本地部署配置要求 (一)轻量级模型 ▌DeepSeek-R1-1.5B 内存容量:≥8GB 显卡需求:支持CPU推理(无需独立GPU) 适用场景:本地环境验证测试/Ollama集成调试 (二&a…...
Python常见面试题的详解25
1. 什么是 MD5 加密,有什么特点 要点 定义:MD5 是一种广泛应用的哈希函数,它能够把任意长度的输入数据经过特定算法处理,转化为长度固定为 128 位的哈希值,通常以 32 位十六进制字符串的形式呈现,主要用于验…...
DeepSeek赋能大模型内容安全,网易易盾AIGC内容风控解决方案三大升级
在近两年由AI引发的生产力革命的背后,一场关乎数字世界秩序的攻防战正在上演:AI生成的深度伪造视频导致企业品牌声誉损失日均超千万,批量生成的侵权内容使版权纠纷量与日俱增,黑灰产利用AI技术持续发起欺诈攻击。 与此同时&#…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
迁移科技3D视觉系统:重塑纸箱拆垛场景的智能革命
一、传统拆垛场景的困局与破局之道 在汽车零部件仓库中,每天有超过2万只异形纸箱需要拆垛分拣。传统人工拆垛面临三大挑战: 效率瓶颈:工人每小时仅能处理200-300件,且存在间歇性疲劳安全隐患:20kg以上重箱搬运导致年…...
