当前位置: 首页 > news >正文

DeepSeek R1 简易指南:架构、本地部署和硬件要求

DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(Reinforcement Learning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。

技术架构深度解析

模型体系:

DeepSeek-R1系列包含两大核心成员:

  1. DeepSeek-R1-Zero
  • 参数规模:6710亿(MoE架构,每个token激活370亿参数)

  • 训练特点:完全基于强化学习的端到端训练

  • 核心优势:展现出自我验证、长链推理等涌现能力

  • 典型表现:AIME 2024基准测试71%准确率

  1. DeepSeek-R1
  • 参数规模:与Zero版保持相同体量

  • 训练创新:多阶段混合训练策略

  • 核心改进:监督微调冷启动 + 强化学习优化

  • 性能提升:AIME 2024准确率提升至79.8%

训练方法论对比

强化学习与主要依赖监督学习的传统模型不同,DeepSeek-R1广泛使用了RL。训练利用组相对策略优化(GRPO),注重准确性和格式奖励,以增强推理能力,而无需大量标记数据。

蒸馏技术:为了普及高性能模型,DeepSeek 还发布了 R1 的精简版本,参数范围从 15 亿到 700 亿不等。这些模型基于 Qwen 和 Llama 等架构,表明复杂的推理可以封装在更小、更高效的模型中。提炼过程包括利用完整的 DeepSeek-R1 生成的合成推理数据对这些较小的模型进行微调,从而在降低计算成本的同时保持高性能。

DeepSeek-R1-Zero训练流程:

基础模型 → 直接强化学习 → 基础奖励机制(准确率+格式)

DeepSeek-R1四阶段训练法:

  1. 精选监督微调(数千高质量样本)

  2. 推理任务强化学习

  3. 拒绝采样数据扩充

  4. 全任务强化学习优化

关键技术亮点:

  • 组相对策略优化(GRPO):兼顾格式与准确性的奖励机制

  • 知识蒸馏技术:支持从1.5B到70B的参数规模适配

  • 多架构兼容:基于Qwen/Llama等主流架构的轻量化版本

性能实测数据

测试基准

DeepSeek-R1

OpenAI o1-1217

AIME 2024

79.8%

79.2%

MATH-500

97.3%

96.4%

接口调用效率:在标准测试环境下展现优异性价比,较同类产品降低30%

部署方案全解析

云端接入方案:

  1. 对话平台接入
  • 访问DeepSeek Chat平台

  • 选择"深度思考"模式体验链式推理

a29e1cf66e37ad771e3d6cb39d21c75f.png

  1. API集成

    import?openai
    client?=?openai.OpenAI(
    ???base_url=“https://api.deepseek.com/v1”,
    ???api_key=“your_api_key”
    )
    response?=?client.chat.completions.create(
    ???model=“deepseek-r1”,
    ???messages=[{“role”:“user”,“content”:“解释量子纠缠现象”}]
    )


深度求索R1部署全方案详解
一、云端接入方案

1. 网页端交互(DeepSeek Chat平台)

步骤详解:

  1. 访问平台:打开浏览器进入 https://chat.deepseek.com

  2. 账户认证:

  • 新用户:点击"注册" → 输入邮箱/手机号 → 完成验证码校验

  • 已有账户:直接登录

模式选择:

  • 在对话界面右上角选择「深度思考」模式

  • 开启「增强推理」选项(默认启用)

会话管理:

  • 新建对话:点击+号创建新会话

  • 历史记录:左侧边栏查看过往对话

高级设置:

  • 温度参数:滑动条调节生成多样性(0.1-1.0)

  • 最大生成长度:设置响应token上限(默认2048)

2. API集成方案

#?完整API接入示例(Python)
import?openai
from?dotenv?import?load_dotenv
import?os#?环境配置
load_dotenv()
DEEPSEEK_API_KEY?=?os.getenv("DEEPSEEK_API_KEY")#?客户端初始化
client?=?openai.OpenAI(
????base_url="https://api.deepseek.com/v1",
????api_key=DEEPSEEK_API_KEY,
????timeout=30??#?超时设置
)#?带重试机制的请求函数
def?query_deepseek(prompt,?max_retries=3):
????for?attempt?in?range(max_retries):
????????try:
????????????response?=?client.chat.completions.create(
????????????????model="deepseek-r1",
????????????????messages=[{"role":?"user",?"content":?prompt}],
????????????????temperature=0.7,
????????????????top_p=0.9,
????????????????max_tokens=1024
????????????)
????????????return?response.choices[0].message.content
????????except?Exception?as?e:
????????????if?attempt?==?max_retries?-?1:
????????????????raise?e
????????????print(f"请求失败,正在重试...?({attempt+1}/{max_retries})")#?使用示例
if?__name__?==?"__main__":
????result?=?query_deepseek("用React实现可拖拽的甘特图组件")
????print(result)
二、本地部署方案

1. 硬件配置要求

|?模型类型????????|?最小GPU配置??????|?CPU配置??????????|?内存要求??|?磁盘空间?|
|---------------|----------------|------------------|---------|--------|
|?R1-Zero全量版??|?RTX?4090(24GB)?|?Xeon?8核+128GB???|?128GB???|?500GB??|
|?R1蒸馏版-70B???|?RTX?3090(24GB)?|?i9-13900K+64GB???|?64GB????|?320GB??|
|?R1蒸馏版-14B???|?RTX?3060(12GB)?|?Ryzen?7+32GB?????|?32GB????|?80GB???|
|?R1蒸馏版-1.5B??|?无需GPU?????????|?任意四核处理器+8GB?|?8GB?????|?12GB???|

2. Ollama本地部署全流程

c07711c99534e21f1fbc4c8ba32412cc.png

#?完整部署流程(Ubuntu示例)
#?步骤1:安装依赖
sudo?apt?update?&&?sudo?apt?install?-y?nvidia-driver-535?cuda-12.2#?步骤2:安装Ollama
curl?-fsSL?https://ollama.com/install.sh?|?sh#?步骤3:配置环境变量
echo?'export?OLLAMA_HOST=0.0.0.0'?>>?~/.bashrc
source?~/.bashrc#?步骤4:启动服务
sudo?systemctl?start?ollama#?步骤5:拉取模型(以14B为例)
ollama?pull?deepseek-r1:14b#?步骤6:运行模型(带GPU加速)
ollama?run?deepseek-r1:14b?--gpu#?步骤7:验证部署
curl?http://localhost:11434/api/tags?|?jq

3. 高级部署方案

方案一:vLLM服务化部署
#?启动推理服务
vllm?serve?--model?deepseek-ai/DeepSeek-R1-Distill-Qwen-32B?

–tensor-parallel-size?2?
–max-model-len?32768?
–gpu-memory-utilization?0.9

#?客户端调用
from?vllm?import?LLM,?SamplingParams
llm?=?LLM("deepseek-ai/DeepSeek-R1-Distill-Qwen-32B")
sampling_params?=?SamplingParams(temperature=0.8,?top_p=0.95)
print(llm.generate(["解释BERT模型的注意力机制"],?sampling_params))方案二:llama.cpp量化部署
#?模型转换
./quantize?./models/deepseek-r1-14b.gguf?./models/deepseek-r1-14b-Q5_K_M.gguf?Q5_K_M#?启动推理
./main?-m?./models/deepseek-r1-14b-Q5_K_M.gguf?

-n?1024?
–repeat_penalty?1.1?
–color?
-i

三、混合部署方案

边缘计算场景配置

#?docker-compose.yml配置示例
version:?'3.8'services:
??ollama:
????image:?ollama/ollama
????deploy:
??????resources:
????????reservations:
??????????devices:
????????????-?driver:?nvidia
??????????????count:?1
??????????????capabilities:?[gpu]
????volumes:
??????-?ollama:/root/.ollama
????ports:
??????-?"11434:11434"??api-gateway:
????image:?nginx:alpine
????ports:
??????-?"80:80"
????volumes:
??????-?./nginx.conf:/etc/nginx/nginx.confvolumes:
??ollama:

性能优化技巧

  1. 显存优化:使用--num-gpu 1参数限制GPU使用数量

  2. 量化加速:尝试GGUF格式的Q4_K_M量化版本

  3. 批处理优化:设置--batch-size 32提升吞吐量

  4. 缓存策略:启用Redis缓存高频请求prompt

最后

从DeepSeek-R1-Zero到DeepSeek-R1,代表了研究中的一个重要学习历程。DeepSeek-R1-Zero 证明了纯粹的强化学习是可行的,而 DeepSeek-R1 则展示了如何将监督学习与强化学习相结合,从而创建出能力更强、更实用的模型。

“本文所述技术参数均来自公开研究文献,实际部署需遵守当地法律法规”

最后:

React Hook 深入浅出

CSS技巧与案例详解

vue2与vue3技巧合集

VueUse源码解读

相关文章:

DeepSeek R1 简易指南:架构、本地部署和硬件要求

DeepSeek 团队近期发布的DeepSeek-R1技术论文展示了其在增强大语言模型推理能力方面的创新实践。该研究突破性地采用强化学习(Reinforcement Learning)作为核心训练范式,在不依赖大规模监督微调的前提下显著提升了模型的复杂问题求解能力。 …...

基于 ‌MySQL 数据库‌对三级视图(用户视图、DBA视图、内部视图)的详细解释

基于 ‌MySQL 数据库‌对三级视图(用户视图、DBA视图、内部视图)的详细解释,结合理论与实际操作说明: 一、三级视图核心概念 数据库的三级视图是 ANSI/SPARC 体系结构的核心思想,MySQL 的实现逻辑如下: …...

[Web 信息收集] Web 信息收集 — 手动收集 IP 信息

关注这个专栏的其他相关笔记:[Web 安全] Web 安全攻防 - 学习手册-CSDN博客 0x01:通过 DNS 服务获取域名对应 IP DNS 即域名系统,用于将域名与 IP 地址相互映射,方便用户访问互联网。对于域名到 IP 的转换过程则可以参考下面这篇…...

跨AWS账户共享SQS队列以实现消息传递

在现代分布式系统中,不同的服务和组件通常需要进行通信和协作。Amazon Simple Queue Service (SQS)提供了一种可靠、可扩展且完全托管的消息队列服务,可以帮助您构建分布式应用程序。本文将介绍如何在一个AWS账户(账户A)中创建SQS队列,并授权另一个AWS账户(账户B)中的用户和角色…...

DeepSeek 202502 开源周合集

DeepSeek 本周的开源项目体现了其在 AI 技术栈中的深厚积累,从硬件协同优化(FlashMLA)、通信库(DeepEP)、核心计算(DeepGEMM)到推理模型(DeepSeek-R1),覆盖了…...

springai系列(二)从0开始搭建和接入azure-openai实现智能问答

文章目录 前言1.从0开始搭建项目2.进入微软openai申请key3.配置application.yaml4.编写controller5.测试源码下载地址总结 前言 之前使用openai的官网的api需要科学上网,但是我们可以使用其他的代理间接实现使用chatgpt的相关模型,解决这个问题。比如:本…...

Apache部署Vue操作手册(SSL部分)

1. Apache配置(windows版本) 1.1 httpd.conf 配置 找到apache配置文件 httpd.conf,将下面两条文件的注释#去掉,如果没搜到就新增这两条配置。一个是开启ssl模块,一个是引用专门的ssl配置文件。 LoadModule ssl_modu…...

人类驾驶的人脑两种判断模式(反射和预判)-->自动驾驶两种AI模式

一种模式是直觉模式,判断是基于条件反射,视觉感知 触发到 直接条件反射(从经历中沉淀形成的神经信息闭环),类似现在自动驾驶技术的传统AI模式。 另一种模式是物理时空图式推理模式,判断是基于预判预测&…...

Docker和K8S中pod、services、container的介绍和关系

在容器化技术中,Docker、Kubernetes(K8S)、Pod、Service 和 Container 是核心概念,理解它们的关系对构建和管理现代应用至关重要。以下是详细的分步解释: 1. 核心概念定义 (1) Container(容器)…...

【uniapp】在UniApp中实现持久化存储:安卓--生成写入数据为jsontxt

在移动应用开发中,数据存储是一个至关重要的环节。对于使用UniApp开发的Android应用来说,缓存(Cache)是一种常见的数据存储方式,它能够提高应用的性能和用户体验。然而,缓存数据在用户清除缓存或清除应用数…...

DeepSeek-R1本地部署保姆级教程

一、DeepSeek-R1本地部署配置要求 (一)轻量级模型 ▌DeepSeek-R1-1.5B 内存容量:≥8GB 显卡需求:支持CPU推理(无需独立GPU) 适用场景:本地环境验证测试/Ollama集成调试 (二&a…...

Python常见面试题的详解25

1. 什么是 MD5 加密,有什么特点 要点 定义:MD5 是一种广泛应用的哈希函数,它能够把任意长度的输入数据经过特定算法处理,转化为长度固定为 128 位的哈希值,通常以 32 位十六进制字符串的形式呈现,主要用于验…...

DeepSeek赋能大模型内容安全,网易易盾AIGC内容风控解决方案三大升级

在近两年由AI引发的生产力革命的背后,一场关乎数字世界秩序的攻防战正在上演:AI生成的深度伪造视频导致企业品牌声誉损失日均超千万,批量生成的侵权内容使版权纠纷量与日俱增,黑灰产利用AI技术持续发起欺诈攻击。 与此同时&#…...

阿里开源正式开园文生视频、图生视频模型-通义万相 WanX2.1

简介 发布时间与背景 通义万相 Wan2.1 模型于 2025年1月 发布,并迅速登顶视频生成领域权威评测 Vbench 的榜首,超越了包括 Sora、HunyuanVideo、Minimax 等国内外知名模型,并于这周开源。它是阿里云在 AI 视频生成领域的最新成果&#xff0…...

【Python爬虫(73)】用Python爬虫开启交通数据宝藏,畅行出行未来

【Python爬虫】专栏简介:本专栏是 Python 爬虫领域的集大成之作,共 100 章节。从 Python 基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发…...

和鲸科技携手四川气象,以 AI 的力量赋能四川气象一体化平台建设

气象领域与农业、能源、交通、环境科学等国计民生关键领域紧密相连,发挥着不可替代的重要作用。人工智能技术的迅猛发展,为气象领域突破困境带来了新的契机。AI 技术能够深度挖掘气象大数据中蕴含的复杂信息,助力人类更精准地把握自然规律&am…...

spring boot 2.7 + seata +微服务 降级失败问题修复

文章引流 一个简单而使用的API管理工具 版本号 spring boot 2.7.17 spring-cloud-dependencies 2021.0.8 spring-cloud-circuitbreaker-resilience4j 2.1.7 spring-cloud-starter-alibaba-seata 2021.1 jdk 1.8原因分析 未配置属性 feign.circuitbreaker.enabledtrue # 未…...

python-leetcode-最长公共子序列

1143. 最长公共子序列 - 力扣(LeetCode) class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:m, n len(text1), len(text2)dp [[0] * (n 1) for _ in range(m 1)]for i in range(1, m 1):for j in range(1, n …...

centos 7 停更后如何升级kernel版本 —— 筑梦

centos 6/7 内核升级(bios/uefi两种引导方式) —— 筑梦之路_centos7 更新efi-CSDN博客 此处主要说明kernel rpm离线包可以从哪里下载,安装升级参考之前的文章 # 历史kernel版本rpm包http://mirrors.coreix.net/elrepo-archive-archive/kernel/el7/x86_64/RPMS/…...

WPF-3天快速WPF入门并达到企业级水准

嘿,小伙伴们!如果你已经有一定的C#开发基础,但想快速掌握WPF开发,达到企业级水准,那接下来的这个三天快速入门计划绝对适合你!虽然听起来有点挑战,但别担心,只要跟着这个高强度、结构…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...