当前位置: 首页 > news >正文

CNN:卷积网络中设计1×1夹在主要卷积核如3×3前后的作用

话不多说直接上图举例
ResNet网络结构图
像在 ResNet 的 Bottleneck 结构 中,1x1 卷积 被放置在 3x3 卷积 的前后,这种设计有以下几个关键作用和优势:


1. 降低计算复杂度

  • 问题:直接使用 3x3 卷积计算量较大,尤其是当输入和输出通道数较多时。
  • 解决方案
    • 在 3x3 卷积之前,使用 1x1 卷积将输入通道数减少(通常减少到原来的 1/4)。
    • 在 3x3 卷积之后,使用 1x1 卷积将通道数恢复到目标输出通道数。
  • 效果
    • 通过减少中间特征图的通道数,显著降低了 3x3 卷积的计算量。

2. 减少参数量

  • 问题:3x3 卷积的参数量与输入和输出通道数成正比,当通道数较多时,参数量会非常大。
  • 解决方案
    • 使用 1x1 卷积先减少通道数,再使用 3x3 卷积,最后恢复通道数。
  • 效果
    • 这种设计可以大幅减少参数量,从而降低模型的存储需求和过拟合风险。

3. 跨通道信息融合

  • 问题:3x3 卷积主要关注局部空间特征,对跨通道信息的融合能力有限。
  • 解决方案
    • 1x1 卷积可以在不改变空间尺寸的情况下,对通道维度进行线性组合,从而实现跨通道信息融合。
  • 效果
    • 增强了特征的表达能力。

4. 非线性增强

  • 问题:单纯的 3x3 卷积只能提取线性特征。
  • 解决方案
    • 在 1x1 卷积和 3x3 卷积之间加入非线性激活函数(如 ReLU)。
  • 效果
    • 引入了更多的非线性,增强了模型的表达能力。

5. Bottleneck 结构的具体设计

Bottleneck 结构通常由以下三部分组成:

  1. 1x1 卷积(降维)

    • 输入通道数: C i n C_{in} Cin
    • 输出通道数: C m i d = C i n / 4 C_{mid} = C_{in} / 4 Cmid=Cin/4
    • 作用:减少通道数,降低计算量。
  2. 3x3 卷积(空间特征提取)

    • 输入通道数: C m i d C_{mid} Cmid
    • 输出通道数: C m i d C_{mid} Cmid
    • 作用:提取局部空间特征。
  3. 1x1 卷积(升维)

    • 输入通道数: C m i d C_{mid} Cmid
    • 输出通道数: C o u t C_{out} Cout
    • 作用:恢复通道数,完成特征变换。

6. 计算量对比

假设:

  • 输入特征图尺寸: H × W × C i n H \times W \times C_{in} H×W×Cin
  • 输出特征图尺寸: H × W × C o u t H \times W \times C_{out} H×W×Cout
  • 3x3 卷积核尺寸: 3 × 3 × C i n × C o u t 3 \times 3 \times C_{in} \times C_{out} 3×3×Cin×Cout
  • Bottleneck 结构:
    • 第一个 1x1 卷积: 1 × 1 × C i n × C m i d 1 \times 1 \times C_{in} \times C_{mid} 1×1×Cin×Cmid
    • 3x3 卷积: 3 × 3 × C m i d × C m i d 3 \times 3 \times C_{mid} \times C_{mid} 3×3×Cmid×Cmid
    • 第二个 1x1 卷积: 1 × 1 × C m i d × C o u t 1 \times 1 \times C_{mid} \times C_{out} 1×1×Cmid×Cout

计算量对比

  • 直接使用 3x3 卷积的计算量:
    H × W × C i n × C o u t × 3 × 3 H \times W \times C_{in} \times C_{out} \times 3 \times 3 H×W×Cin×Cout×3×3
  • Bottleneck 结构的计算量:
    H × W × C i n × C m i d × 1 × 1 + H × W × C m i d × C m i d × 3 × 3 + H × W × C m i d × C o u t × 1 × 1 H \times W \times C_{in} \times C_{mid} \times 1 \times 1 + H \times W \times C_{mid} \times C_{mid} \times 3 \times 3 + H \times W \times C_{mid} \times C_{out} \times 1 \times 1 H×W×Cin×Cmid×1×1+H×W×Cmid×Cmid×3×3+H×W×Cmid×Cout×1×1
    通常 C m i d = C i n / 4 C_{mid} = C_{in} / 4 Cmid=Cin/4,因此 Bottleneck 结构的计算量远小于直接使用 3x3 卷积。

7. 总结

Bottleneck 结构中 1x1 卷积的作用:

  1. 降低计算复杂度和参数量
  2. 实现跨通道信息融合
  3. 增强非线性表达能力

这种设计使得 ResNet 可以更高效地训练更深的网络,同时保持较强的特征提取能力。

相关文章:

CNN:卷积网络中设计1×1夹在主要卷积核如3×3前后的作用

话不多说直接上图举例: 像在 ResNet 的 Bottleneck 结构 中,1x1 卷积 被放置在 3x3 卷积 的前后,这种设计有以下几个关键作用和优势: 1. 降低计算复杂度 问题:直接使用 3x3 卷积计算量较大,尤其是当输入和…...

esp8266 rtos sdk开发环境搭建

1. 安装必要的工具 1.1 安装 Git Git 用于从远程仓库克隆代码,你可以从Git 官方网站下载 Windows 版本的安装程序。安装过程中可保持默认设置,安装完成后,在命令提示符(CMD)或 PowerShell 中输入git --version&#…...

【深度学习】矩阵的核心问题解析

一、基础问题 1. 如何实现两个矩阵的乘法? 问题描述:给定两个矩阵 A A A和 B B B,编写代码实现矩阵乘法。 解法: 使用三重循环实现标准矩阵乘法。 或者使用 NumPy 的 dot 方法进行高效计算。 def matrix_multiply(A, B):m, n …...

DeepSeek模型昇腾部署优秀实践

2024年12月26日,DeepSeek-V3横空出世,以其卓越性能备受瞩目。该模型发布即支持昇腾,用户可在昇腾硬件和MindIE推理引擎上实现高效推理,但在实际操作中,部署流程与常见问题困扰着不少开发者。本文将为你详细阐述昇腾 De…...

从 Spring Boot 2 升级到 Spring Boot 3 的终极指南

一、升级前的核心准备 1. JDK 版本升级 Spring Boot 3 强制要求 Java 17 及以上版本。若当前项目使用 Java 8 或 11,需按以下步骤操作: 安装 JDK 17:从 Oracle 或 OpenJDK 官网下载,配置环境变量(如 JAVA_HOME&…...

mysql架构查询执行流程(图解+描述)

目录 mysql架构查询执行流程 图解 描述 mysql架构查询执行流程 图解 描述 用户连接到数据库后,由连接器处理 连接器负责跟客户端建立连接、获取权限、维持和管理连接 客户端发送一条查询给服务器 服务器先检查查询缓存,如果命中缓存,则立…...

20分钟 Bash 上手指南

文章目录 bash 概念与学习目的第一个 bash 脚本bash 语法变量的使用位置参数管道符号(过滤条件)重定向符号条件测试命令条件语句case 条件分支Arrayfor 循环函数exit 关键字 bash 脚本记录历史命令查询文件分发内容 bash 概念与学习目的 bash&#xff0…...

事故02分析报告:慢查询+逻辑耦合导致订单无法生成

一、事故背景与现象 时间范围 2022年2月3日 18:11~18:43(历时32分钟) 受影响系统 系统名称角色影响范围dc3订单数据库主库订单生成、事务回滚dc4订单数据库从库数据同步、容灾切换 业务影响 核心业务:手机点餐、C扫B支付订单无法推送至…...

vant2 vue2 两个输入框联动验证遇到的问题

需求是两个输入框&#xff0c;一个输上限A&#xff0c;一个输下限B <van-fieldv-model"formData.upperLimit"name"upperLimit"type"number"label"上限"required:formatter"formatter"/><van-fieldv-model"for…...

硬件工程师入门教程

1.欧姆定律 测电压并联使用万用表测电流串联使用万用表&#xff0c;红入黑出 2.电阻的阻值识别 直插电阻 贴片电阻 3.电阻的功率 4.电阻的限流作用 限流电阻阻值的计算 单位换算关系 5.电阻的分流功能 6.电阻的分压功能 7.电容 电容简单来说是两块不连通的导体加上中间的绝…...

如何使用Docker搭建哪吒监控面板程序

哪吒监控(Nezha Monitoring)是一款自托管、轻量级的服务器和网站监控及运维工具,旨在为用户提供实时性能监控、故障告警及自动化运维能力。 文档地址:https://nezha.wiki/ 本章教程,使用Docker方式安装哪吒监控面板,在此之前,你需要提前安装好Docker. 我当前使用的操作系…...

python-leetcode 45.二叉树转换为链表

题目&#xff1a; 给定二叉树的根节点root,请将它展开为一个单链表&#xff1a; 展开后的单链表应该使用同样的TreeNode,其中right子指针指向链表中的下一个节点&#xff0c;而左子指针始终为空 展开后的单链表应该与二叉树先序遍历顺序相同 方法一&#xff1a;二叉树的前序…...

uni小程序wx.switchTab有时候跳转错误tab问题,解决办法

在一个子页面里面使用uni.switchTab或者wx.switchTab跳转到tab菜单的时候&#xff0c;先发送了一个请求&#xff0c;然后执行跳转到tab菜单&#xff0c;但是这个时候&#xff0c;出错了........也是非常的奇怪&#xff0c;不加请求就没问题......但是业务逻辑就是要先执行某个请…...

【一起学Rust | 框架篇 | Tauri2.0框架】在Tauri应用中设置Http头(Headers)

文章目录 前言一、配置准备1. 检查版本2. 使用条件3. 支持的请求头&#xff08;并不是全部支持&#xff09; 二、使用步骤1. 如何配置header2. 框架集成1. 对于Vite系列、Nuxt、Next.js这种前端框架Vite系列框架Angular系列框架Nuxt系列框架Next.js系列框架 2. 对于Yew和Leptos…...

STM32G473VET6 在 Keil MDK 下手动移植 FreeRTOS 指南

下面将详细介绍如何在 Keil MDK 环境下将 FreeRTOS 手动移植到 STM32G473VET6 微控制器上。内容涵盖工程创建、获取源码、文件组织、移植层适配、测试任务编写以及编译调试等步骤。 1. 工程搭建&#xff08;Keil 项目创建&#xff09; 创建基础工程&#xff1a;首先准备一个基…...

波导阵列天线 学习笔记11双极化全金属垂直公共馈电平板波导槽阵列天线

摘要&#xff1a; 本communicaition提出了一种双极化全金属垂直公共馈电平板波导槽阵列天线。最初提出了一种公共馈电的单层槽平板波导来实现双极化阵列。此设计消除了传统背腔公共馈电的复杂腔体边缘的必要性&#xff0c;提供了一种更简单的天线结构。在2x2子阵列种发展了宽十…...

DeepSeek-R1自写CUDA内核跑分屠榜:开启GPU编程自动化新时代

引言 在AI领域&#xff0c;深度学习模型的性能优化一直是研究者们关注的核心。最近&#xff0c;斯坦福和普林斯顿的研究团队发现&#xff0c;DeepSeek-R1生成的自定义CUDA内核不仅超越了OpenAI的o1和Claude 3.5 Sonnet&#xff0c;还在KernelBench框架中取得了总排名第一的好成…...

001 Kafka入门及安装

Kafka入门及安装 文章目录 Kafka入门及安装1.介绍Kafka的基本概念和核心组件 2.安装1.docker快速安装zookeeper安装kafka安装 添加topic删除topickafka-ui安装 2.Docker安装&#xff08;SASL/PLAIN认证配置-用户名密码&#xff09; 来源参考的deepseek&#xff0c;如有侵权联系…...

2024 年出现的 11 大数据收集趋势

数据收集趋势的出现是对技术进步、企业需求和市场波动的回应&#xff0c;我们对 2025 年的预测涵盖了所有方面。物联网和人工智能等前沿技术将改变组织收集和处理数据的方式&#xff0c;法规将促使它们更加细致地对待数据&#xff0c;而消费者对增强现实和虚拟现实的兴趣将为数…...

动态内容加载的解决方案:Selenium与Playwright对比故障排查实录

方案进程 2024-09-01 09:00 | 接到亚航航班数据采集需求 2024-09-01 11:30 | 首次尝试使用Selenium遭遇Cloudflare验证 2024-09-01 14:00 | 切换Playwright方案仍触发反爬机制 2024-09-01 16:30 | 引入爬虫代理IPUA轮换策略 2024-09-02 10:00 | 双方案完整实现并通过压力测试故…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...