物理竞赛中的线性代数
线性代数
1 行列式
1.1 n n n 阶行列式
定义 1.1.1:称以下的式子为一个 n n n 阶行列式:
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix}\mathbf A\end{vmatrix}= \begin{vmatrix} a_{11}& a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix} A = a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
其中第 i i i 行第 j j j 列的元素成为行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 的第 ( i , j ) (i,j) (i,j) 元素。
元素 a 11 , a 22 , ⋯ , a n n a_{11},a_{22},\cdots,a_{nn} a11,a22,⋯,ann 称为 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 的主对角线。
性质 1:上三角行列式的值等于其对角线元素之和。
性质 2:行列式某行(列)全为零,则行列式的值等于零。
性质 3:用常数 c c c 乘以行列式的某一行(列),得到的行列式的值等于原行列式的值的 c c c 倍。
性质 4:交换行列式不同的两行(列),行列式的值变号。
性质 5:若行列式两行(列)成比例,则行列式的值为零。
性质 6:若行列式中某行(列)元素均为两项之和,则行列式可表示为两个行列式之和。
性质 7:行列式的某一行(列)乘以某个数加到另一行(列)上,行列式的值不变。
性质 8:行列式和其转置有相同的值。
定义 1.1.2:定义元素 a i j a_{ij} aij 的余子式 M i j M_{ij} Mij 为由其行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 中划去第 i i i 行第 j j j 列后剩下的元素组成的行列式。
定义 1.1.3:在行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 中, a i j a_{ij} aij 的代数余子式定义为: A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(−1)i+jMij,其中 M i j M_{ij} Mij 为 a i j a_{ij} aij 的余子式。
1.2 行列式的展开
设 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 是 n n n 阶行列式,元素 a i j a_{ij} aij 的代数余子式记为 A i j A_{ij} Aij,则对任意 s , r ( = 1 , 2 , ⋯ , n ) , s ≠ r s,r(=1,2,\cdots,n),s\neq r s,r(=1,2,⋯,n),s=r 存在:
∣ A ∣ = ∑ i = 1 n a i r A i r ∑ i = 1 n a i r A i s = 0 \begin{vmatrix}\mathbf A\end{vmatrix}=\sum\limits_{i=1}^n a_{ir}A_{ir} \\ \sum\limits_{i=1}^n a_{ir}A_{is}=0 A =i=1∑nairAiri=1∑nairAis=0
1.3 Cramer 法则
设线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n \end{cases} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2 ⋯an1x1+an2x2+⋯+annxn=bn
记其系数行列式为 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A ,则:
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , ⋯ , x n = ∣ A n ∣ ∣ A ∣ x_1=\dfrac{\begin{vmatrix}\mathbf A_1\end{vmatrix}}{\begin{vmatrix}\mathbf A\end{vmatrix}},x_2=\dfrac{\begin{vmatrix}\mathbf A_2\end{vmatrix}}{\begin{vmatrix}\mathbf A\end{vmatrix}},\cdots,x_n=\dfrac{\begin{vmatrix}\mathbf A_n\end{vmatrix}}{\begin{vmatrix}\mathbf A\end{vmatrix}} x1= A A1 ,x2= A A2 ,⋯,xn= A An
其中 ∣ A j ∣ \begin{vmatrix}\mathbf A_j\end{vmatrix} Aj 为 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 去掉第 j j j 列并用 b 1 , b 2 , ⋯ , b n b_1,b_2,\cdots,b_n b1,b2,⋯,bn 将之替换的 n n n 阶行列式。
2 矩阵
2.1 矩阵的概念
定义 2.1.1:由 m n mn mn 个数 a i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ n ) a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots n) aij(i=1,2,⋯,m;j=1,2,⋯n) 拍成 m m m 行 n n n 列的矩形阵列:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \\ \end{matrix} a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
称为 m m m 行 n n n 列矩阵,简称为 m × n m\times n m×n 矩阵(或 m × n m\times n m×n 阵)。
若 A \mathbf A A 的元素全是实数则称 A \mathbf A A 为实矩阵。
若 A \mathbf A A 的元素全是复数则称 A \mathbf A A 为复矩阵。
若所有元素均为 0 0 0 则称为零矩阵 O \mathrm O O,或 O m × n \mathrm O_{m\times n} Om×n。
若 m = n m=n m=n 则称为方阵,反之为长方阵。
若方阵 A \mathbf A A 仅存在对角元 a 11 , a 22 , ⋯ , a n n a_{11},a_{22},\cdots,a_{nn} a11,a22,⋯,ann 则简记为 A = d i a g ( a 11 , a 22 , ⋯ , a n n ) \mathbf A=\mathbf{diag}(a_{11},a_{22},\cdots,a_{nn}) A=diag(a11,a22,⋯,ann)。
进一步,若 a 11 = a 22 = ⋯ = a n n = 1 a_{11}=a_{22}=\cdots=a_{nn}=1 a11=a22=⋯=ann=1 则称 I n = d i a g ( 1 , 1 , ⋯ , 1 ) \mathbf {I_n}=\mathbf{diag}(1,1,\cdots,1) In=diag(1,1,⋯,1) 为 n n n 阶单位矩阵。
2.2 矩阵的运算
一、矩阵加减法
定义 2.2.1:设有两个 m × n m\times n m×n 矩阵 A = ( a i j ) , B = ( b i j ) \mathbf A=(a_{ij}),\mathbf B=(b_{ij}) A=(aij),B=(bij),定义 A + B \mathbf A+\mathbf B A+B 是一个 m × n m\times n m×n 矩阵且 A + B \mathbf A+\mathbf B A+B 的第 ( i , j ) (i,j) (i,j) 元素等于 a i j + b i j a_{ij}+b_{ij} aij+bij,即 A + B = ( a i j + b i j ) \mathbf A+\mathbf B=(a_{ij}+b_{ij}) A+B=(aij+bij)
矩阵的减法可看作矩阵加法的逆运算,即
A − B = ( a i j − b i j ) \mathbf A-\mathbf B=(a_{ij}-b_{ij}) A−B=(aij−bij)
定义 2.2.2:定义 A = ( a i j ) \mathbf A=(a_{ij}) A=(aij) 的负矩阵为 − A = ( − a i j ) -\mathbf A=(-a_{ij}) −A=(−aij),则有 A + ( − A ) = O \mathbf A+(-\mathbf A)=\mathbf O A+(−A)=O。
矩阵加减法运算规则:
- 交换律: A + B = B + A \mathbf A+\mathbf B=\mathbf B+\mathbf A A+B=B+A。
- 结合律: ( A + B ) + C = A + ( B + C ) (\mathbf A+\mathbf B)+\mathbf C=\mathbf A+(\mathbf B+\mathbf C) (A+B)+C=A+(B+C)。
- O + A = A + O = A \mathbf O+\mathbf A=\mathbf A+\mathbf O=\mathbf A O+A=A+O=A。
- A + ( − B ) = A − B \mathbf A+(-\mathbf B)=\mathbf A-\mathbf B A+(−B)=A−B。
二、矩阵的数乘
定义 2.2.3:设 A \mathbf A A 是一个 m × n m\times n m×n 矩阵, A = ( a i j ) m × n \mathbf A=(a_{ij})_{m\times n} A=(aij)m×n, c c c 是一个常数,定义 c A = ( c a i j ) m × n c\mathbf A=(ca_{ij})_{m\times n} cA=(caij)m×n 。 c A c\mathbf A cA 称为数 c A c\mathbf A cA 的数乘。
矩阵的数乘运算规则:
- c ( A + B ) = c A + c B c(\mathbf A+\mathbf B)=c\mathbf A+c\mathbf B c(A+B)=cA+cB。
- ( c + d ) A = c A + d A (c+d)\mathbf A=c\mathbf A+d\mathbf A (c+d)A=cA+dA。
- ( c d ) A = c ( d A ) (cd)\mathbf A=c(d\mathbf A) (cd)A=c(dA)。
- 1 ⋅ A = A 1\cdot\mathbf A=\mathbf A 1⋅A=A。
- 0 ⋅ A = O 0\cdot\mathbf A=\mathbf O 0⋅A=O。
三、矩阵的乘法
定义 2.2.4:设有 m × k m\times k m×k 矩阵 A = ( a i j ) m × k \mathbf A=(a_{ij})_{m\times k} A=(aij)m×k,以及 k × n k\times n k×n 矩阵 B = ( b i j ) m × n \mathbf B=(b_{ij})_{m\times n} B=(bij)m×n。定义 A \mathbf A A 和 B \mathbf B B 的乘积 A B \mathbf A\mathbf B AB 是一个 m × n m\times n m×n 矩阵且 A B \mathbf A\mathbf B AB 的第 ( i , j ) (i,j) (i,j) 元素
c i j = ∑ l = 1 k a i l b l j c_{ij}=\sum\limits_{l=1}^ka_{il}b_{lj} cij=l=1∑kailblj
矩阵乘法的运算规则:
- 结合律: ( A B ) C = A ( B C ) (\mathbf A\mathbf B)\mathbf C=\mathbf A(\mathbf B\mathbf C) (AB)C=A(BC)。
- 左右分配律: A ( B + C ) = A B + A C , ( A + B ) C = A B + B C \mathbf A(\mathbf B+\mathbf C)=\mathbf A\mathbf B+\mathbf A\mathbf C,(\mathbf A+\mathbf B)\mathbf C=\mathbf A\mathbf B+\mathbf B\mathbf C A(B+C)=AB+AC,(A+B)C=AB+BC。
- c ( A B ) = ( c A ) B = A ( c B ) c(\mathbf A\mathbf B)=(c\mathbf A)\mathbf B=\mathbf A(c\mathbf B) c(AB)=(cA)B=A(cB)。
- 对任意的 m × n m\times n m×n 矩阵 A \mathbf A A, I m A = A = A I n \mathbf {I_m}\mathbf A=\mathbf A=\mathbf A\mathbf {I_n} ImA=A=AIn。
方阵幂运算规则:
- A r A s = A r + s \mathbf A^r\mathbf A^s=\mathbf A^{r+s} ArAs=Ar+s。
- ( A r ) s = A r s (\mathbf A^r)^s=\mathbf A^{rs} (Ar)s=Ars。
四、矩阵的转置
定义 2.2.5:设 A = ( a i j ) \mathbf A=(a_{ij}) A=(aij) 是 m × n m\times n m×n 矩阵,定义 A \mathbf A A 的转置 A T \mathbf A^{\mathbf T} AT 为一个 n × m n\times m n×m 矩阵,它的第 k k k 行正好是矩阵 A \mathbf A A 的第 k k k 列( k = 1 , 2 , ⋯ , n k=1,2,\cdots,n k=1,2,⋯,n);它的第 r r r 行是 A \mathbf A A 的第 r r r 行( r = 1 , 2 , ⋯ , n r=1,2,\cdots,n r=1,2,⋯,n)。
矩阵转置运算规则:
- ( A T ) T = A (\mathbf A^{\mathbf T})^{\mathbf T}=\mathbf A (AT)T=A。
- ( A + B ) T = A T + B T (\mathbf A+\mathbf B)^{\mathbf T}=\mathbf A^{\mathbf T}+\mathbf B^{\mathbf T} (A+B)T=AT+BT。
- ( c A ) T = c A T (c\mathbf A)^{\mathbf T}=c\mathbf A^{\mathbf T} (cA)T=cAT。
- ( A B ) T = B T A T (\mathbf A\mathbf B)^{\mathbf T}=\mathbf B^{\mathbf T}\mathbf A^{\mathbf T} (AB)T=BTAT。
五、矩阵的共轭
定义 2.2.6:设 A = ( a i j ) m × n \mathbf A=(a_{ij})_{m\times n} A=(aij)m×n 是一个复矩阵,则 A \mathbf A A 的共轭矩阵 A ‾ \overline{\mathbf A} A 是一个 m × n m\times n m×n 复矩阵,且
A ‾ = ( a ‾ i j ) m × n \overline{\mathbf A}=(\overline a_{ij})_{m\times n} A=(aij)m×n
矩阵共轭运算规则:
- A + B ‾ = A ‾ + B ‾ \overline{\mathbf A+\mathbf B}=\overline {\mathbf A}+\overline {\mathbf B} A+B=A+B。
- c A ‾ = c ‾ A ‾ \overline{c\mathbf A}=\overline c \overline {\mathbf A} cA=cA。
- A B ‾ = A ‾ B ‾ \overline{\mathbf A \mathbf B}=\overline{\mathbf A}\ \overline {\mathbf B} AB=A B。
- ( A T ) ‾ = ( A ‾ ) T \overline{({\mathbf A}^{\mathbf T})}=(\overline{\mathbf A})^{\mathbf T} (AT)=(A)T。
2.3 方阵的逆阵
定义 2.3.1:设 A \mathbf A A 是 n n n 阶方阵,若存在一个 n n n 阶方阵 B \mathbf B B,使得:
A B = B A = I n , \mathbf A\mathbf B=\mathbf B\mathbf A=\mathbf {I_n}, AB=BA=In,
则称 B \mathbf B B 是 A \mathbf A A 的逆阵,记为 B = A − 1 \mathbf B=\mathbf A^{-1} B=A−1。凡有逆阵的矩阵称为可逆阵或非奇异阵(简称非异阵),否则称为奇异阵。
矩阵求逆运算规则:
- 若 A \mathbf A A 是非异阵,则 ( A − 1 ) − 1 = A (\mathbf A^{-1})^{-1}=\mathbf A (A−1)−1=A。
- 若 A , B \mathbf A,\mathbf B A,B 都是 n n n 阶非异阵,则 A B \mathbf A\mathbf B AB 也是 n n n 阶非异阵且 ( A B ) − 1 = B − 1 A − 1 (\mathbf A\mathbf B)^{-1}=\mathbf B^{-1}\mathbf A^{-1} (AB)−1=B−1A−1。
- 若 A \mathbf A A 是非异阵, c c c 是非零数,则 c A c\mathbf A cA 也是非异阵且 ( c A ) − 1 = c − 1 A − 1 (c\mathbf A)^{-1}=c^{-1}\mathbf A^{-1} (cA)−1=c−1A−1。
- 若 A \mathbf A A 是非异阵,则 A \mathbf A A 的转置 A T \mathbf A^{\mathbf T} AT 也是非异阵且 ( A T ) − 1 = ( A − 1 ) T (\mathbf A^{\mathbf T})^{-1}=(\mathbf A^{-1})^{\mathbf T} (AT)−1=(A−1)T。
设 A \mathbf A A 是 n n n 阶方阵,这个方阵决定了一个 n n n 阶行列式,记为 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 或 det A \det\mathbf A detA。
定义 2.3.2 :设 A A A 是 n n n 阶方阵, A i j A_{ij} Aij 是行列式 ∣ A ∣ \begin{vmatrix}\mathbf A\end{vmatrix} A 中第 ( i , j ) (i,j) (i,j) 元素 a i j a_{ij} aij 的代数余子式,则称下列方阵为 A \mathbf A A 的伴随阵:
( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) \begin{pmatrix} A_{11}&A_{21}&\cdots &A_{n1} \\ A_{12}&A_{22}&\cdots &A_{n2} \\ \vdots&\vdots&\ddots &\vdots \\ A_{1n}&A_{2n}&\cdots &A_{nn} \end{pmatrix} A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann
A \mathbf A A 的伴随矩通常记为 A ∗ \mathbf {A^*} A∗。
引理 2.3.1:设 A \mathbf A A 为 n n n 阶方阵, A ∗ \mathbf A^* A∗ 为 A \mathbf A A 的伴随矩,则
A A ∗ = A ∗ A = ∣ A ∣ ⋅ I n \mathbf A\mathbf A^*=\mathbf A^*\mathbf A=\begin{vmatrix}\mathbf A\end{vmatrix}\cdot\mathbf{I_{n}} AA∗=A∗A= A ⋅In
定理 2.3.1:若 ∣ A ∣ ≠ 0 \begin{vmatrix}\mathbf A\end{vmatrix}\neq0 A =0,则 A \mathbf A A 是一个非异阵,且
A − 1 = 1 ∣ A ∣ A ∗ \mathbf A^{-1}=\dfrac{1}{\begin{vmatrix}\mathbf A\end{vmatrix}} \mathbf A^* A−1= A 1A∗
2.4 矩阵的初等变换与初等矩阵
相关文章:
物理竞赛中的线性代数
线性代数 1 行列式 1.1 n n n 阶行列式 定义 1.1.1:称以下的式子为一个 n n n 阶行列式: ∣ A ∣ ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix}\mathbf A\end{vmatrix} \begin{vmatrix} a_{11…...
FFmpeg-chapter3-读取视频流(原理篇)
ffmpeg网站:About FFmpeg 1 库介绍 (1)libavutil是一个包含简化编程函数的库,包括随机数生成器、数据结构、数学例程、核心多媒体实用程序等等。 (2)libavcodec是一个包含音频/视频编解码器的解码器和编…...
机器视觉线阵相机分时频闪选型/机器视觉线阵相机分时频闪选型
在机器视觉系统中,线阵相机的分时频闪技术通过单次扫描切换不同光源或亮度,实现在一幅图像中捕捉多角度光照效果,从而提升缺陷检测效率并降低成本。以下是分时频闪线阵相机的选型要点及关键考量因素: 一、分时频闪技术的核心需求 多光源同步控制 分时频闪需相机支持多路光源…...
「Selenium+Python自动化从0到1②|2025浏览器操控7大核心API实战(附高效避坑模板))」
Python 自动化操作浏览器基础方法 在进行 Web 自动化测试时,操作浏览器是必不可少的环节。Python 结合 Selenium 提供了强大的浏览器操作功能,让我们能够轻松地控制浏览器执行各种任务。本文将详细介绍如何使用 Python 和 Selenium 操作浏览器的基本方法…...
矩阵系列 题解
1.洛谷 P1962 斐波那契数列 题意 大家都知道,斐波那契数列是满足如下性质的一个数列: F n { 1 ( n ≤ 2 ) F n − 1 F n − 2 ( n ≥ 3 ) F_n \left\{\begin{aligned} 1 \space (n \le 2) \\ F_{n-1}F_{n-2} \space (n\ge 3) \end{aligned}\right. …...
活动报名:Voice Agent 技术现状及应用展望丨 3.8 北京
「人人发言,所有人向所有人学习!」——Z 沙龙 「一起探索下一代语音驱动的人机交互界面。」——RTE 开发者社区 3 月 8 日周六下午,北京,「智谱 Z 计划&Z Fund」和「RTE 开发者社区」将合办一场 Voice Agent 主题的线下活动…...
【卡牌——二分】
题目 分析 发现答案具有二分性,果断二分答案 代码 #include <bits/stdc.h> using namespace std; using ll long long;const int N 2e510;int n, a[N], li[N]; ll m;bool check(int x) {ll t m;for(int i 1; i < n; i){if(a[i] > x) continue; //…...
《第十五部分》STM32之FLASH闪存(终结篇)
本章是江科大自学STM32的最后一章节,历经2个月的断断续续时间,终于学到了最后,总结,这次的学习历程,相对于学习51还是略出一些难度,也就是若你是非科班,学习起来还是有一定的难度的,…...
属性的设置
笔记 class Student:def __init__(self, name, gender):self.name nameself.__gender gender # self.__gender 是私有的实例属性# 使用property 修改方法,将方法转成属性使用propertydef gender(self):return self.__gender# 将我们的gender这个属性设置为可写属…...
本地部署Deepseek+Cherry Studio
为啥要本地部署deepseek? 因为给deepseek发送指令得到服务器繁忙的回馈,本地部署会运行的更快 1.Ollama安装与部署 Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计 winR——cmd——ol…...
CMU15445(2023fall) Project #2 - Extendible Hash Index 匠心分析
胡未灭,鬓已秋,泪空流 此生谁料 心在天山 身老沧州 ——诉衷情 完整代码见: SnowLegend-star/CMU15445-2023fall: Having Conquered the Loftiest Peak, We Stand But a Step Away from Victory in This Stage. With unwavering determinati…...
【VSCode】VSCode下载安装与配置极简描述
VSCode 参考网址:[Visual Studio Code Guide | GZTime’s Blog]. 下载安装 下载地址:Download Visual Studio Code - Mac, Linux, Windows. 注:推荐不更改安装位置,并且在附加任务中“其他”中的四项全部勾选,即将用…...
【前端基础】Day 5 CSS浮动
目录 1. 浮动 1.1 标准流(普通流/文档流) 1.2 浮动 1.2.1 浮动的特性 1.2.2 浮动元素常和标准流父级搭配使用 1.2.3 案例 2. 常见网页布局 2.1 常见网页布局 2.2 浮动布局注意点 3. 清除浮动 3.1 原因 3.2 清除浮动的本质 3.3 清除浮动的方…...
处理DeepSeek返回的markdown文本
处理DeepSeek返回的markdown文本 markdown预览组件,支持公式显示,支持uniapp。 相关依赖 markdown-itmarkdown-it-mathjaxmarkdown-it-katexmarkdown-it-latexkatexgithub-markdown-css 组件源码 <!--* Description: markdown显示组件* Author: wa…...
互联网+房产中介+装修设计+物料市场+智能家居一体化平台需求书
一、项目概述 1.1 项目背景 随着互联网技术的飞速发展以及人们生活品质的显著提升,传统房产交易、装修设计、家居购物等领域暴露出诸多问题。信息不对称使得用户难以获取全面准确的信息,在房产交易中可能高价买入或低价卖出,装修时可能遭遇…...
Node.js定义以及性能优化
Node.js Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时,广泛用于构建高性能的网络应用。以下是一些常见的 Node.js 面试题及其解答,帮助你准备面试: 1. 什么是 Node.js? Node.js 是一个基于 Chrome V8 引擎的 JavaSc…...
浅谈流媒体协议以及视频编解码
流媒体协议介绍 流媒体协议用于传输视频、音频等多媒体数据,确保数据流畅地传输到用户设备。常见的流媒体协议包括 RTMP、HLS、DASH、WebRTC 等,每种协议具有不同的特点和适用场景。 1. RTMP (Real-Time Messaging Protocol) 定义:由 Adob…...
在 Windows 上配置 Ollama 服务并开放局域网访问
为了在局域网内共享 Ollama 服务,我们需要完成以下两步: 1、设置 Ollama 的环境变量 OLLAMA_HOST,使其监听局域网的 IP 地址。 (1) 配置 Ollama 服务的监听地址 Ollama 服务使用环境变量 OLLAMA_HOST 来指定监听的地…...
【六祎 - Note】消息队列的演变,架构图;备忘录; IBM MQ,RabbitMQ,Kafka,Pulsar
IBM MQ 于 1993 年推出。它最初称为 MQSeries,2002 年更名为 WebSphere MQ。2014 年更名为 IBM MQ。IBM MQ 是一款非常成功的产品,广泛应用于金融领域。其收入在 2020 年仍达到 10 亿美元。 RabbitMQ 架构与 IBM MQ 不同,更类似于 Kafka 的…...
常见AI写作工具介绍(ChatGPT 4o、DeepClaude、Claude 3.5 Sonnet 、DeepSeek R1等)
AI写作工具介绍 1. ChatGPT-4o ChatGPT-4o是OpenAI于2024年5月发布的最新旗舰模型,相比之前的版本,它在多模态支持和实时推理能力上有了显著提升。它能够处理和理解音频、图像和文本数据,适用于复杂的图像分析、语音识别等应用场景[1]。 2…...
《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
SQL进阶之旅 Day 22:批处理与游标优化
【SQL进阶之旅 Day 22】批处理与游标优化 文章简述(300字左右) 在数据库开发中,面对大量数据的处理任务时,单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”,深入探讨如何通过批量操作和游标技术提…...
