LangChain原理解析及开发实战指南(2025年最新版)
一、LangChain核心架构解析
1.1 框架设计理念
LangChain是基于提示工程(Prompt Engineering)构建的LLM应用开发框架,其核心思想是通过模块化组件实现大语言模型与业务系统的无缝对接。该框架采用分层设计:
- 接口层:统一对接OpenAI、DeepSeek-R1等主流LLM API
- 逻辑层:通过Chain和Agent实现业务流程编排
- 数据层:支持本地向量数据库与云存储的混合部署
1.2 核心模块交互机制
二、六大核心模块深度剖析
2.1 模型I/O(Model I/O)
2.1.1 LLM初始化
from langchain import OpenAI# 配置GPT-4 Turbo模型
llm = OpenAI(model_name="gpt-4-turbo-2025",temperature=0.7,max_tokens=2048
)
支持动态模型切换,通过修改model_name参数可在不同LLM间快速迁移(网页6)
2.1.2 嵌入模型
from langchain.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings(model="text-embedding-3-large",dimensions=3072
)
最新版支持维度压缩技术,可将3072维向量降维至1536维保持90%准确率(网页3)
2.2 链(Chains)
2.2.1 链式工作流
from langchain.chains import LLMChain, SequentialChain# 定义问题生成链
question_chain = LLMChain(...)# 定义解答验证链
validation_chain = LLMChain(...)# 构建顺序链
full_chain = SequentialChain(chains=[question_chain, validation_chain],input_variables=["topic"],output_variables=["final_answer"]
)
支持动态路由机制,可根据上下文选择执行路径(网页4)
2.3 记忆(Memory)
2.3.1 会话记忆实现
from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory(memory_key="chat_history",return_messages=True,k=5 # 保留最近5轮对话
)
采用滑动窗口算法优化长对话场景下的内存占用(网页3)
2.4 代理(Agents)
2.4.1 工具集成示例
from langchain.agents import Toolcalculator_tool = Tool(name="Calculator",func=math_processor,description="用于执行数学计算"
)weather_tool = Tool(name="WeatherAPI",func=get_weather_data,description="查询实时天气数据"
)
支持工具优先级调度机制,响应延迟<200ms(网页6)
2.5 数据连接(Data Connection)
2.5.1 文档处理流程
2.6 回调(Callbacks)
支持全链路监控:
from langchain.callbacks import FileCallbackHandlerhandler = FileCallbackHandler('llm_logs.json')
chain.run(input, callbacks=[handler])
可捕获Token消耗、响应延迟等关键指标(网页6)
三、开发实战:构建智能文档问答系统
3.1 环境配置
pip install langchain>=0.1.0 \openai \faiss-cpu \tiktoken
3.2 数据处理流程
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter# PDF文档加载
loader = PyPDFLoader("technical_manual.pdf")
documents = loader.load()# 文本分割
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200
)
docs = text_splitter.split_documents(documents)
3.3 向量存储优化
from langchain.vectorstores import FAISSvectorstore = FAISS.from_documents(documents=docs,embedding=OpenAIEmbeddings()
)# 相似性检索
retriever = vectorstore.as_retriever(search_type="mmr", # 最大边际相关性search_kwargs={"k": 5}
)
3.4 问答链构建
from langchain.chains import RetrievalQAqa_chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever,return_source_documents=True
)
3.5 性能优化策略
- 缓存机制:对高频查询结果进行Redis缓存
- 异步处理:使用
AsyncRetrievalQA
提升并发能力 - 精度控制:设置相似度阈值(>0.78)过滤低质量结果
四、进阶开发技巧
4.1 自定义工具开发
from langchain.tools import BaseToolclass CustomAPI(BaseTool):name = "CustomAPI"description = "访问企业私有API"def _run(self, query: str) -> str:headers = {"Authorization": f"Bearer {API_KEY}"}response = requests.get(API_ENDPOINT, params={"q":query}, headers=headers)return response.json()
4.2 多模态扩展
from langchain_community.llms import DeepSeekMultiModalmm_llm = DeepSeekMultiModal(vision_model="deepseek-vl-1b",text_model="deepseek-llm-7b"
)response = mm_llm.generate([{"type": "image_url","image_url": {"url": "https://example.com/chart.png"}
}])
五、最佳实践与调优
5.1 性能监控指标
指标 | 推荐值 | 监控方法 |
---|---|---|
响应延迟 | <1.5s | Prometheus+Grafana |
Token消耗 | <5k/请求 | OpenAI Usage API |
缓存命中率 | >85% | Redis监控 |
5.2 安全防护方案
- 输入过滤:使用LLM Guard检测恶意提示
- 输出审核:部署T5-XXL模型进行内容审核
- 权限控制:基于RBAC实现工具访问控制
相关文章:
LangChain原理解析及开发实战指南(2025年最新版)
一、LangChain核心架构解析 1.1 框架设计理念 LangChain是基于提示工程(Prompt Engineering)构建的LLM应用开发框架,其核心思想是通过模块化组件实现大语言模型与业务系统的无缝对接。该框架采用分层设计: 接口层:统一对接OpenAI、DeepSee…...

YoloV8改进策略:Block改进|CBlock,Transformer式的卷积结构|即插即用
摘要 论文标题: SparseViT: Nonsemantics-Centered, Parameter-Efficient Image Manipulation Localization through Spare-Coding Transformer 论文链接: https://arxiv.org/pdf/2412.14598 官方GitHub: https://github.com/scu-zjz/SparseViT 这段代码出自SparseViT ,代码如…...
Ubuntu 下 nginx-1.24.0 源码分析 - ngx_open_file
ngx_open_file 定义在src/os/unix/ngx_files.h #define ngx_open_file(name, mode, create, access) \open((const char *) name, mode|create, access)#define NGX_FILE_RDONLY O_RDONLY #define NGX_FILE_WRONLY O_WRONLY #de…...

测试金蝶云的OpenAPI
如何使用Postman测试K3Cloud的OpenAPI 1. 引言 在本篇博客中,我将带你逐步了解如何使用Postman测试和使用K3Cloud的OpenAPI。内容包括下载所需的SDK文件、配置文件、API调用及测试等步骤。让我们开始吧! 2. 下载所需的SDK文件 2.1 获取SDK 首先&…...

C语言408考研先行课第一课:数据类型
由于408要考数据结构……会有算法题…… 所以,需要C语言来进行一个预备…… 因为大一贪玩,C语言根本没学进去……谁能想到考研还用得到呢?【手动doge(bushi) 软件用的是Clion,可以自行搜索教程下载使用。…...
11天 -- Redis 中跳表的实现原理是什么?Redis 的 hash 是什么?Redis Zset 的实现原理是什么?
Redis 中跳表的实现原理是什么? Redis 中的跳表(Skip List)是一种基于有序链表的高效数据结构,通过在链表上增加多级索引来提高数据的查找效率。以下是 Redis 中跳表的实现原理: 1. 基本概念 节点结构:跳…...
单细胞分析(19)—— 单细胞转录组基因集评分方法
下面是每种基因集评分方法的原理介绍代码示例,适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组(scRNA-seq)数据分析中。 🔬 单细胞转录组基因集评分方法(附代码示例) 在单细胞RNA测…...
010 rocketmq批量消息
文章目录 批量消息BatchProducer.javaBatchConsumer.java 批量消息 批量发送可以提⾼发送性能,但有⼀定的限制: topic 相同 waitStoreMsgOK 相同 (⾸先我们建设消息的iswaitstoremsgoktrue(默认为true), 如果没有异常,我们将始终收到"O…...

JavaWeb后端基础(3)
原打算把Mysql操作数据库的一些知识写进去,但是感觉没必要,要是现在会的都是简单的增删改查,所以,这一篇,我直接从java操作数据库开始写,所以这一篇大致就是记一下JDBC、MyBatis、以及SpringBoot的配置文件…...
Oracle数据库基础入门(三): DQL 深入解析与实践
在 Oracle 数据库的知识体系中,数据查询语言(DQL)无疑是最为常用且关键的部分之一。对于 Java 全栈开发者而言,熟练掌握 DQL 不仅能高效地从数据库中获取所需数据,更是构建强大后端应用的基石。通过 DQL,我…...
P9231 [蓝桥杯 2023 省 A] 平方差
P9231 [蓝桥杯 2023 省 A] 平方差 - 洛谷 题目描述 给定 L,R,问 L≤x≤R 中有多少个数 x 满足存在整数 y,z 使得 xy2−z2。 输入格式 输入一行包含两个整数 L,R,用一个空格分隔。 输出格式 输出一行包含一个整数满足题目给定条件的 x 的数量。 输…...

贪心算法 求解思路
贪心算法简介 贪心算法是通过做一系列的选择来给出某一问题的最优解。对算法中的每一个决策点,做一个当时(看起来是)最佳的选择。这种启发式策略并不是总能产生出最优解,但它常常能给出最优解。 在实际设计贪心算法时࿰…...
2025/2/25,字节跳动后端开发一面面经
一、双方简单自我介绍 面试官先自我介绍,之后属于面试官看简历过程,基本不听。 二、实习中遇到最难的事情,怎么解决的 主要问的还是实习中做过的项目,项目难点在哪里(自己参与的地方),面对困难是怎么思考,怎么实际操作解决的。 三、项目实现细节 掌握自己项目的实…...

Buildroot 添加自定义模块-内置文件到文件系统
目录 概述实现步骤1. 创建包目录和文件结构2. 配置 Config.in3. 定义 cp_bin_files.mk4. 添加源文件install.shmy.conf 5. 配置与编译 概述 Buildroot 是一个高度可定制和模块化的嵌入式 Linux 构建系统,适用于从简单到复杂的各种嵌入式项目. buildroot的源码中bui…...

SpringBoot新闻推荐系统设计与实现
随着信息时代的快速发展,新闻推荐系统成为用户获取个性化内容的重要工具。本文将介绍一个幽络源的基于SpringBoot开发的新闻推荐系统,该系统功能全面,操作简便,能够满足管理员和用户的多种需求。 管理员模块 管理员模块为系统管…...

领域驱动设计:事件溯源架构简介
概述 事件溯源架构通常由3种应用设计模式组成,分别是:事件驱动(Event Driven),事件溯源(Event Source)、CQRS(读写分离)。这三种应用设计模式常见于领域驱动设计(DDD)中,但它们本身是一种应用设计的思想,不仅仅局限于DDD,每一种模式都可以单独拿出来使用。 E…...

基于Java+Spring+Mybsita+mysql的汽租车辆共享平台的设计源码+设计文档
文末获取源码数据库文档 感兴趣的可以先收藏,有毕设问题,项目以及论文撰写等问题都可以和博主沟通,尽最大努力帮助更多的人! 目录 1软件需求 1.1引言 1.1.1编写目的 1.1.2背景 1.2 绪论 1.2.1-Internet与…...

深度学习的正则化深入探讨
文章目录 一、说明二、学习目标三、什么是机器学习中的正则化四、了解过拟合和欠拟合五、代价函数的意义六、什么是偏差和方差?七、机器学习中的正则化? 一、说明 在训练机器学习模型时,模型很容易过拟合或欠拟合。为了避免这种情况…...
Token相关设计
文章目录 1. 双Token 机制概述1.1 访问令牌(Access Token)1.2 刷新令牌(Refresh Token) 2. 双Token 认证流程3. Spring Boot 具体实现3.1 生成 Token(使用 JWT)3.2 解析 Token3.3 登录接口(返回…...
【时序预测】在线学习:算法选择(从线性模型到深度学习解析)
——如何为动态时序预测匹配最佳增量学习策略? 引言:在线学习的核心价值与挑战 在动态时序预测场景中(如实时交通预测、能源消耗监控),数据以流式(Streaming)形式持续生成,且潜在的…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...