当前位置: 首页 > news >正文

单细胞分析(19)—— 单细胞转录组基因集评分方法

下面是每种基因集评分方法的原理介绍+代码示例,适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组(scRNA-seq)数据分析中。


🔬 单细胞转录组基因集评分方法(附代码示例)

在单细胞RNA测序(scRNA-seq)分析中,基因集评分(Gene Set Scoring)是一项关键任务,能帮助研究者识别细胞功能状态。本文介绍5种主流方法,并提供代码示例


1️⃣ AUCell:基于AUC的基因集活性评分

📌 原理

  • AUCell 使用 AUC(Area Under the Curve) 来计算基因集在单细胞数据中的活跃度
  • 不依赖数据标准化,适用于异质性较高的数据集。

💻 R 代码示例

# 1. 加载必要的包
library(AUCell)
library(SingleCellExperiment)# 2. 读取表达矩阵(假设 scRNA-seq 数据已转换为 SingleCellExperiment)
exprMatrix <- assay(sce, "counts")  # 取 count 数据# 3. 定义基因集
geneSet <- list(MyGeneSet = c("CD8A", "GZMB", "PRF1"))  # 以T细胞毒性相关基因为例# 4. 计算 AUC 分数
cells_rankings <- AUCell_buildRankings(exprMatrix, nCores = 1)
cells_AUC <- AUCell_calcAUC(geneSet, cells_rankings)# 5. 可视化结果
AUCell_plot(cells_AUC)

✅ 适用场景:适合用于检测高度活跃的基因集,例如肿瘤浸润T细胞的活化情况


2️⃣ ssGSEA:单样本基因集富集分析

📌 原理

  • 扩展自 GSEA,可计算每个样本的基因集富集得分
  • 适用于大规模数据,计算速度快,但受数据分布影响较大。

💻 R 代码示例

library(GSVA)
library(GSEABase)# 1. 读取数据
exprMatrix <- as.matrix(assay(sce, "logcounts"))  # 取 log-normalized 数据# 2. 定义基因集
geneSet <- GeneSet(setName = "T_Cell_Activation",geneIds = c("CD69", "IL2", "IFNG"),geneIdType = SymbolIdentifier())# 3. 运行 ssGSEA
ssgsea_scores <- gsva(exprMatrix, list(T_Cell_Activation = geneSet), method = "ssgsea")# 4. 绘制热图
heatmap(ssgsea_scores)

✅ 适用场景:适用于大规模数据分析,如免疫细胞功能状态的评估。


3️⃣ VAM:方差调整的马氏距离计算

📌 原理

  • 通过方差调整(Variance Adjustment)计算基因集活跃度,减少数据噪音的影响。
  • 适用于跨数据集分析,避免数据归一化带来的误差。

💻 Python 代码示例

import vam
import scanpy as sc# 1. 读取数据
adata = sc.read_h5ad("single_cell_data.h5ad")# 2. 定义基因集
gene_set = ["CD3D", "CD3E", "CD3G"]  # 例:T 细胞相关基因# 3. 计算 VAM 得分
vam_scores = vam.calculate_vam_score(adata, gene_set)# 4. 将得分存入 AnnData
adata.obs["VAM_score"] = vam_scores# 5. 可视化
sc.pl.umap(adata, color="VAM_score")

✅ 适用场景:适合用于跨数据集比较,如不同队列的免疫特征对比


4️⃣ UCell:基于秩和得分的评分方法

📌 原理

  • 采用 Spearman 秩和统计 方法计算基因集的活跃度
  • 计算效率高,适用于大规模单细胞数据

💻 R 代码示例

library(UCell)
library(Seurat)# 1. 读取 Seurat 数据
sce <- readRDS("single_cell_seurat.rds")# 2. 定义基因集
geneSet <- c("GATA3", "TBX21", "IL4")  # 例:Th1/Th2 相关基因# 3. 计算 UCell 评分
sce <- AddModuleScore_UCell(sce, features = list(Th1_Th2 = geneSet), name = "UCell")# 4. 可视化
FeaturePlot(sce, features = "UCell_Th1_Th2")

✅ 适用场景:适合大样本量数据,如全转录组水平的功能分析


5️⃣ Seurat AddModuleScore:Seurat环境下的简单评分方法

📌 原理

  • 计算目标基因集的表达均值,并与背景基因对比。
  • 适用于 Seurat 分析框架,但受批次效应影响较大。

💻 R 代码示例

library(Seurat)# 1. 读取 Seurat 数据
sce <- readRDS("seurat_obj.rds")# 2. 定义基因集
geneSet <- list(MyGeneSet = c("CCL5", "CXCL10", "GZMB"))  # 例:T 细胞趋化因子# 3. 计算模块得分
sce <- AddModuleScore(sce, features = geneSet, name = "MyGeneSet_Score")# 4. 可视化
FeaturePlot(sce, features = "MyGeneSet_Score1")

✅ 适用场景:适合Seurat 分析,如特定细胞亚群功能状态的评估


🔍 方法对比总结

方法计算方式是否需标准化计算效率适用场景
AUCellAUC 排序中等适用于高异质性数据
ssGSEA积分计算适用于大规模数据分析
VAM方差调整马氏距离中等适用于跨数据集分析
UCellSpearman 秩和适用于大规模数据
Seurat AddModuleScore均值计算适用于 Seurat 框架

📝 结论:如何选择最佳方法?

  • 研究细胞功能状态 → 试试 AUCellssGSEA
  • 想分析大规模数据?UCell 是你的最佳选择!
  • 在 Seurat 里工作?Seurat AddModuleScore 是最简单的方法!
  • 想减少批次效应影响? → 选择 VAM

相关文章:

单细胞分析(19)—— 单细胞转录组基因集评分方法

下面是每种基因集评分方法的原理介绍代码示例&#xff0c;适用于R语言和Python两种主流生信分析环境。可以直接应用于单细胞转录组&#xff08;scRNA-seq&#xff09;数据分析中。 &#x1f52c; 单细胞转录组基因集评分方法&#xff08;附代码示例&#xff09; 在单细胞RNA测…...

010 rocketmq批量消息

文章目录 批量消息BatchProducer.javaBatchConsumer.java 批量消息 批量发送可以提⾼发送性能&#xff0c;但有⼀定的限制&#xff1a; topic 相同 waitStoreMsgOK 相同 &#xff08;⾸先我们建设消息的iswaitstoremsgoktrue(默认为true), 如果没有异常,我们将始终收到"O…...

JavaWeb后端基础(3)

原打算把Mysql操作数据库的一些知识写进去&#xff0c;但是感觉没必要&#xff0c;要是现在会的都是简单的增删改查&#xff0c;所以&#xff0c;这一篇&#xff0c;我直接从java操作数据库开始写&#xff0c;所以这一篇大致就是记一下JDBC、MyBatis、以及SpringBoot的配置文件…...

Oracle数据库基础入门(三): DQL 深入解析与实践

在 Oracle 数据库的知识体系中&#xff0c;数据查询语言&#xff08;DQL&#xff09;无疑是最为常用且关键的部分之一。对于 Java 全栈开发者而言&#xff0c;熟练掌握 DQL 不仅能高效地从数据库中获取所需数据&#xff0c;更是构建强大后端应用的基石。通过 DQL&#xff0c;我…...

P9231 [蓝桥杯 2023 省 A] 平方差

P9231 [蓝桥杯 2023 省 A] 平方差 - 洛谷 题目描述 给定 L,R&#xff0c;问 L≤x≤R 中有多少个数 x 满足存在整数 y,z 使得 xy2−z2。 输入格式 输入一行包含两个整数 L,R&#xff0c;用一个空格分隔。 输出格式 输出一行包含一个整数满足题目给定条件的 x 的数量。 输…...

贪心算法 求解思路

贪心算法简介 贪心算法是通过做一系列的选择来给出某一问题的最优解。对算法中的每一个决策点&#xff0c;做一个当时&#xff08;看起来是&#xff09;最佳的选择。这种启发式策略并不是总能产生出最优解&#xff0c;但它常常能给出最优解。 在实际设计贪心算法时&#xff0…...

2025/2/25,字节跳动后端开发一面面经

一、双方简单自我介绍 面试官先自我介绍,之后属于面试官看简历过程,基本不听。 二、实习中遇到最难的事情,怎么解决的 主要问的还是实习中做过的项目,项目难点在哪里(自己参与的地方),面对困难是怎么思考,怎么实际操作解决的。 三、项目实现细节 掌握自己项目的实…...

Buildroot 添加自定义模块-内置文件到文件系统

目录 概述实现步骤1. 创建包目录和文件结构2. 配置 Config.in3. 定义 cp_bin_files.mk4. 添加源文件install.shmy.conf 5. 配置与编译 概述 Buildroot 是一个高度可定制和模块化的嵌入式 Linux 构建系统&#xff0c;适用于从简单到复杂的各种嵌入式项目. buildroot的源码中bui…...

SpringBoot新闻推荐系统设计与实现

随着信息时代的快速发展&#xff0c;新闻推荐系统成为用户获取个性化内容的重要工具。本文将介绍一个幽络源的基于SpringBoot开发的新闻推荐系统&#xff0c;该系统功能全面&#xff0c;操作简便&#xff0c;能够满足管理员和用户的多种需求。 管理员模块 管理员模块为系统管…...

领域驱动设计:事件溯源架构简介

概述 事件溯源架构通常由3种应用设计模式组成,分别是:事件驱动(Event Driven),事件溯源(Event Source)、CQRS(读写分离)。这三种应用设计模式常见于领域驱动设计(DDD)中,但它们本身是一种应用设计的思想,不仅仅局限于DDD,每一种模式都可以单独拿出来使用。 E…...

基于Java+Spring+Mybsita+mysql的汽租车辆共享平台的设计源码+设计文档

文末获取源码数据库文档 感兴趣的可以先收藏&#xff0c;有毕设问题&#xff0c;项目以及论文撰写等问题都可以和博主沟通&#xff0c;尽最大努力帮助更多的人&#xff01; 目录 1软件需求 1.1引言 1.1.1编写目的 1.1.2背景 1.2 绪论 1.2.1&#xff0d;Internet与…...

深度学习的正则化深入探讨

文章目录 一、说明二、学习目标三、什么是机器学习中的正则化四、了解过拟合和欠拟合五、代价函数的意义六、什么是偏差和方差&#xff1f;七、机器学习中的正则化&#xff1f; 一、说明 在训练机器学习模型时&#xff0c;模型很容易过拟合或欠拟合。为了避免这种情况&#xf…...

Token相关设计

文章目录 1. 双Token 机制概述1.1 访问令牌&#xff08;Access Token&#xff09;1.2 刷新令牌&#xff08;Refresh Token&#xff09; 2. 双Token 认证流程3. Spring Boot 具体实现3.1 生成 Token&#xff08;使用 JWT&#xff09;3.2 解析 Token3.3 登录接口&#xff08;返回…...

【时序预测】在线学习:算法选择(从线性模型到深度学习解析)

——如何为动态时序预测匹配最佳增量学习策略&#xff1f; 引言&#xff1a;在线学习的核心价值与挑战 在动态时序预测场景中&#xff08;如实时交通预测、能源消耗监控&#xff09;&#xff0c;数据以流式&#xff08;Streaming&#xff09;形式持续生成&#xff0c;且潜在的…...

React antd的datePicker自定义,封装成组件

一、antd的datePicker自定义 需求&#xff1a;用户需要为日期选择器的每个日期单元格添加一个Tooltip&#xff0c;当鼠标悬停时显示日期、可兑换流量余额和本公会可兑流量。这些数据需要从接口获取。我需要结合之前的代码&#xff0c;确保Tooltip正确显示&#xff0c;并且数据…...

学生管理前端

文章目录 首页student.html查询功能 首页 SpringBoot前端html页面放在static文件夹下&#xff1a;/src/main/resources/static 默认首页为index.html&#xff0c;我们可以用两个超链接或者两个button跳转到对应的页面。这里只是单纯的跳转页面&#xff0c;不需要提交表单等其…...

深入理解并实现自定义 unordered_map 和 unordered_set

亲爱的读者朋友们&#x1f603;&#xff0c;此文开启知识盛宴与思想碰撞&#x1f389;。 快来参与讨论&#x1f4ac;&#xff0c;点赞&#x1f44d;、收藏⭐、分享&#x1f4e4;&#xff0c;共创活力社区。 在 C 的标准模板库&#xff08;STL&#xff09;中&#xff0c;unorder…...

顶顶通呼叫中心中间件(mod_cti基于FreeSWITCH)-大模型电话机器人

语音流直接对接Realtime API 多模态大模型 直接把音频流输出给大模型&#xff0c;大模型返回音频流。 顶顶通CTI对Realtime API 的支持 提供了以下2个APP可对接任意 •cti_audio_stream 通过TCP推流和播放流&#xff0c;适合用于人机对话场景。 •cti_unicast_start 通过旁…...

kinova机械臂绿色灯一闪一闪及刷机方法

一、背景 实验室有两个kinova mico机械臂&#xff0c;但经常出现操纵杆上的绿色灯一闪一闪的&#xff0c;导致无法使用操纵杆或ROS进行控制&#xff0c;下面给出官方的教程以及所需要的FS 0CPP 0008_6.2.5_mico_6dof.hex文件。 重要的东西写在前面&#xff1a; a、如果出现操…...

第16天:C++多线程完全指南 - 从基础到现代并发编程

第16天&#xff1a;C多线程完全指南 - 从基础到现代并发编程 一、多线程基础概念 1. 线程创建与管理&#xff08;C11&#xff09; #include <iostream> #include <thread>void hello() {std::cout << "Hello from thread " << std::this_…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...