当前位置: 首页 > news >正文

Seaborn知识总结

1、简介

(1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码;

(2)置数据集:Seaborn 包含了一些内置的示例数据集,这些数据集可以用于练习和演示。这些数据集通常与示例图表一起使用,以帮助用户更好地理解如何使用 Seaborn 创建可视化。

(3)统计图表:Seaborn 支持许多常用的统计图表类型,如散点图、折线图、条形图、箱线图、热图、小提琴图、分类散点图、成对关系图等。这些图表可以用于分析数据的分布、趋势、关系等方面。

(4)配色方案:Seaborn 提供了一组美观的默认配色方案,使图表更具吸引力。此外,还可以轻松自定义配色方案,以满足特定需求。

(5)高级统计功能:Seaborn 提供了用于绘制统计摘要信息的函数,例如回归线、置信区间、误差棒图等。这些功能有助于更深入地理解数据。

(6)对 Pandas 数据框的支持:Seaborn 可以与 Pandas 数据框无缝集成,使数据的导入、转换和可视化变得更加方便。

(7)主题和风格:Seaborn 允许用户选择不同的图表主题和样式,以满足不同的审美和出版需求。

2、catplot

(1)使用sns.catplot函数,并将kind参数设置为"bar"。

(2)创建的 catplot 图,x轴表示不同的物种(species),y轴表示花瓣长度(petal_length),并绘制了各个物种的平均花瓣长度的barplots。

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建catplot并绘制barplots
sns.catplot(x="species", y="petal_length", data=iris, kind="bar")
plt.xlabel("Species")
plt.ylabel("Petal Length")
plt.title("Barplots of Petal Length by Species")
plt.show()

3、violinplot

(1)使用sns.violinplot函数

(2)其中x轴表示不同的物种(species),y轴表示萼片长度(sepal_length)

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建violinplot
sns.violinplot(x="species", y="sepal_length", data=iris)
plt.title("Violin Plot of Sepal Length by Species")
plt.xlabel("Species")
plt.ylabel("Sepal Length")
plt.show()

4、histplot

(1)使用sns.histplot函数

(2)其中 x 轴表示萼片长度(sepal_length),y 轴表示频率(出现次数)

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建histplot
sns.histplot(data=iris, x="sepal_length", hue="species", bins=10, kde=True)
plt.title("Histogram of Sepal Length by Species")
plt.xlabel("Sepal Length")
plt.ylabel("Frequency")
plt.legend(title="Species")
plt.show()

5、jointplot

(1)使用sns.jointplot函数

(2) x 轴表示萼片长度(sepal_length),y 轴表示萼片宽度(sepal_width)

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建jointplot
sns.jointplot(data=iris, x="sepal_length", y="sepal_width", kind="scatter")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.show()

 6、heatmap

(1)使用sns.heatmap函数

(2)首先,使用corr()函数计算了Iris数据集中数值特征之间的相关性矩阵。然后,使用sns.heatmap来绘制相关性热图,其中annot=True表示在热图中显示数值标签,cmap参数用于指定颜色地图,linewidths参数用于指定单元格之间的边框宽度

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 计算相关性矩阵
correlation_matrix = iris.corr()# 创建热图
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap of Iris Dataset")
plt.show()

7、lineplot

(1)使用sns.lineplot函数

(2) lineplot用于显示两个连续变量之间的趋势或关系。示例绘制了萼片长度(sepal_length)与萼片宽度(sepal_width)之间的线图,并使用hue参数将数据按物种分组以在同一图中显示不同物种的趋势。

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建lineplot
sns.lineplot(data=iris, x="sepal_length", y="sepal_width", hue="species")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.title("Line Plot of Sepal Length vs. Sepal Width by Species")
plt.show()

8、boxplot

(1)使用sns.boxplot函数

(2)boxplot通常用于可视化数据的分布和离群值。创建的 boxplot 图,x轴表示不同的物种(species),y轴表示萼片长度(sepal_length)。boxplot图展示了每个物种的萼片长度分布,包括中位数、四分位数和离群值。

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建boxplot
sns.boxplot(x="species", y="sepal_length", data=iris)
plt.xlabel("Species")
plt.ylabel("Sepal Length")
plt.title("Box Plot of Sepal Length by Species")
plt.show()

 

 


👏觉得文章对自己有用的宝子可以收藏文章并给小编点个赞!

👏想了解更多统计学、数据分析、数据开发、机器学习算法、深度学习等有关知识的宝子们,可以关注小编,希望以后我们一起成长!

相关文章:

Seaborn知识总结

1、简介 (1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码; …...

flowable中用户相关api

springboot引入flowable&#xff1a;高版本mysql报错 <!-- https://mvnrepository.com/artifact/org.flowable/flowable-spring-boot-starter --><dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</art…...

java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类

&#xff08;以下内容全部来自上述课程&#xff09; 1.抽象类 父类定义抽象方法后&#xff0c;子类的方法就必须重写&#xff0c;抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为&#xff08;方法&#xff09;抽取到父类之后。由于每一个子类执行的内容是不一样…...

安装 Open WebUI

2025.03.01 早上 我已经安装了ollama 和deeseek模型 &#xff08;本地部署流水账之ollama安装Deepseek安装-CSDN博客&#xff09;&#xff0c;然后需要个与模型沟通的工具&#xff08;这么说不知道对不对&#xff09;。 刚开始用的chatbox&#xff0c;安装很方便&#xff0c;…...

Llama 2中的Margin Loss:为何更高的Margin导致更大的Loss和梯度?

Llama 2中的Margin Loss&#xff1a;为何更高的Margin导致更大的Loss和梯度&#xff1f; 在《Llama 2: Open Foundation and Fine-Tuned Chat Models》论文中&#xff0c;作者在强化学习与人类反馈&#xff08;RLHF&#xff09;的Reward Model训练中引入了Margin Loss的概念&a…...

【后端】Docker一本通

长期更新补充&#xff0c;建议关注收藏点赞 目录 Docker概述安装部署Docker基本操作使用docker部署tomcat使用docker部署mysql Docker概述 docker是⼀个应⽤级隔离的虚拟化技术docker三大核心概念 镜像&#xff1a;是具有源的所有特征的⼀个标记⽂件 仓库&#xff1a;存放镜像…...

工程化与框架系列(13)--虚拟DOM实现

虚拟DOM实现 &#x1f333; 虚拟DOM&#xff08;Virtual DOM&#xff09;是现代前端框架的核心技术之一&#xff0c;它通过在内存中维护UI的虚拟表示来提高渲染性能。本文将深入探讨虚拟DOM的实现原理和关键技术。 虚拟DOM概述 &#x1f31f; &#x1f4a1; 小知识&#xff1…...

数据结构之各类排序算法代码及其详解

1. 排序的概念 排序是一种常见的算法概念&#xff0c;用于将一组数据按照特定的顺序进行排列。排序算法的目的是将一组数据按照递增或递减的顺序重新排列。常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。排序算法的选择通常取决于数据规模、数据分布…...

【洛谷贪心算法】P1090合并果子

为了使消耗的体力最小&#xff0c;每次都应该选择当前重量最小的两堆果子进行合并。可以使用优先队列&#xff08;小根堆&#xff09;来实现这个过程&#xff0c;优先队列可以自动维护元素的顺序&#xff0c;每次取出堆顶的两个元素&#xff08;即最小的两个元素&#xff09;进…...

【告别双日期面板!一招实现el-date-picker智能联动日期选择】

告别双日期面板&#xff01;一招实现el-date-picker智能联动日期选择 1.需求背景2.DateTimePicker 现状图3.日期选择器实现代码4.日期选择器实现效果图5.日期时间选择器实现代码6.日期时间选择器实现效果图 1.需求背景 在用户使用时间查询时&#xff0c;我们经常需要按月份筛选…...

现今大语言模型性能(准确率)比较

现今大语言模型性能(准确率)比较 表头信息:表的标题为“大语言模型性能比较结果”(英文:Table 1: Large Language Model Performance Comparison Results),表明该表是用于对比不同大语言模型的性能。列信息: 模型:列出参与比较的不同大语言模型名称,包括LLAMA3(70B)…...

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图(水文,勿三)

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。 这一节我们来学习指针的相关知识&#xff0c;学习内存和地址&#xff0c;指针变量和地址&#xff0c;包…...

在 UniApp 中实现中间凸起 TabBar 的完整指南

如何在 UniApp 中设置中间 TabBar 凸起效果 在移动应用开发中&#xff0c;TabBar 是常见的导航组件&#xff0c;而中间凸起的 TabBar 按钮则是一种流行的设计风格&#xff0c;常用于突出重要功能&#xff08;如发布、拍照等&#xff09;。UniApp 提供了 midButton 属性&#x…...

Redis大key

Redis大key基本概念&#xff0c;影响 Redis 大 key 指在 Redis 中存储了大量数据的键&#xff0c;它会对 Redis 的性能和内存管理产生影响。 大key的定义与value的大小和元素数量有关&#xff0c;但这个定义并不是绝对的&#xff0c;而是相对的&#xff0c;具体取决于系统的使用…...

WPF高级 | WPF 与数据库交互:连接、查询与数据更新

WPF高级 | WPF 与数据库交互&#xff1a;连接、查询与数据更新 前言一、数据库交互基础概念1.1 数据库简介1.2 数据访问技术 二、WPF 与数据库连接2.1 连接字符串2.2 建立连接 三、WPF 中的数据查询3.1 使用ADO.NET进行数据查询3.2 使用 Entity Framework 进行数据查询3.3 使用…...

CogBlobTool工具

CogBlobTool是一款专用于图像斑点检测于分析的 工具&#xff0c;通过灰度值阈值分割和特征过滤&#xff0c;帮助在复杂背景中提取目标区域&#xff0c;并计算几何属性。 效果图 注意&#xff1a;在这里只有一张图像可以不使用模板匹配工具 CogBlobTool工具的功能 斑点检测于…...

C# WinForm程序中如何调试dll接口

公司的SF系统是自主开发的。不同的机种会有不同数据记录保存的需求&#xff0c;尤其是客户SQE更是各种奇思妙想......于是做了一个接口&#xff0c;实践之下效果还不错呢。 每每总是忘记怎么调试接口&#xff0c;特记录下备查。首先要将&#xff0c; 1 DLL项目与WinForms项目…...

自然语言处理:词频-逆文档频率

介绍 大家好&#xff0c;博主又来给大家分享知识了。本来博主计划完成稠密向量表示的内容分享后&#xff0c;就开启自然语言处理中文本表示的讲解。可在整理分享资料的时候&#xff0c;博主发现还有个知识点&#xff0c;必须得单独拎出来好好说道说道。 这就是TF-IDF&#xf…...

【银河麒麟高级服务器操作系统】服务器测试业务耗时问题分析及处理全流程分享

更多银河麒麟操作系统产品及技术讨论&#xff0c;欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品&#xff0c;请点击访问 麒麟软件产品专区&#xff1a;https://product.kylinos.cn 开发者专区&#xff1a;https://developer…...

基于大数据的民宿旅馆消费数据分析系统

【大数据】基于大数据的民宿旅馆消费数据分析系统&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统可以揭示民宿市场的消费模式和价格分布情况&#xff0c;帮助理解消费者偏好、价格走势及…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...