当前位置: 首页 > news >正文

Seaborn知识总结

1、简介

(1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码;

(2)置数据集:Seaborn 包含了一些内置的示例数据集,这些数据集可以用于练习和演示。这些数据集通常与示例图表一起使用,以帮助用户更好地理解如何使用 Seaborn 创建可视化。

(3)统计图表:Seaborn 支持许多常用的统计图表类型,如散点图、折线图、条形图、箱线图、热图、小提琴图、分类散点图、成对关系图等。这些图表可以用于分析数据的分布、趋势、关系等方面。

(4)配色方案:Seaborn 提供了一组美观的默认配色方案,使图表更具吸引力。此外,还可以轻松自定义配色方案,以满足特定需求。

(5)高级统计功能:Seaborn 提供了用于绘制统计摘要信息的函数,例如回归线、置信区间、误差棒图等。这些功能有助于更深入地理解数据。

(6)对 Pandas 数据框的支持:Seaborn 可以与 Pandas 数据框无缝集成,使数据的导入、转换和可视化变得更加方便。

(7)主题和风格:Seaborn 允许用户选择不同的图表主题和样式,以满足不同的审美和出版需求。

2、catplot

(1)使用sns.catplot函数,并将kind参数设置为"bar"。

(2)创建的 catplot 图,x轴表示不同的物种(species),y轴表示花瓣长度(petal_length),并绘制了各个物种的平均花瓣长度的barplots。

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建catplot并绘制barplots
sns.catplot(x="species", y="petal_length", data=iris, kind="bar")
plt.xlabel("Species")
plt.ylabel("Petal Length")
plt.title("Barplots of Petal Length by Species")
plt.show()

3、violinplot

(1)使用sns.violinplot函数

(2)其中x轴表示不同的物种(species),y轴表示萼片长度(sepal_length)

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建violinplot
sns.violinplot(x="species", y="sepal_length", data=iris)
plt.title("Violin Plot of Sepal Length by Species")
plt.xlabel("Species")
plt.ylabel("Sepal Length")
plt.show()

4、histplot

(1)使用sns.histplot函数

(2)其中 x 轴表示萼片长度(sepal_length),y 轴表示频率(出现次数)

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建histplot
sns.histplot(data=iris, x="sepal_length", hue="species", bins=10, kde=True)
plt.title("Histogram of Sepal Length by Species")
plt.xlabel("Sepal Length")
plt.ylabel("Frequency")
plt.legend(title="Species")
plt.show()

5、jointplot

(1)使用sns.jointplot函数

(2) x 轴表示萼片长度(sepal_length),y 轴表示萼片宽度(sepal_width)

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建jointplot
sns.jointplot(data=iris, x="sepal_length", y="sepal_width", kind="scatter")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.show()

 6、heatmap

(1)使用sns.heatmap函数

(2)首先,使用corr()函数计算了Iris数据集中数值特征之间的相关性矩阵。然后,使用sns.heatmap来绘制相关性热图,其中annot=True表示在热图中显示数值标签,cmap参数用于指定颜色地图,linewidths参数用于指定单元格之间的边框宽度

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 计算相关性矩阵
correlation_matrix = iris.corr()# 创建热图
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap of Iris Dataset")
plt.show()

7、lineplot

(1)使用sns.lineplot函数

(2) lineplot用于显示两个连续变量之间的趋势或关系。示例绘制了萼片长度(sepal_length)与萼片宽度(sepal_width)之间的线图,并使用hue参数将数据按物种分组以在同一图中显示不同物种的趋势。

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建lineplot
sns.lineplot(data=iris, x="sepal_length", y="sepal_width", hue="species")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.title("Line Plot of Sepal Length vs. Sepal Width by Species")
plt.show()

8、boxplot

(1)使用sns.boxplot函数

(2)boxplot通常用于可视化数据的分布和离群值。创建的 boxplot 图,x轴表示不同的物种(species),y轴表示萼片长度(sepal_length)。boxplot图展示了每个物种的萼片长度分布,包括中位数、四分位数和离群值。

import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建boxplot
sns.boxplot(x="species", y="sepal_length", data=iris)
plt.xlabel("Species")
plt.ylabel("Sepal Length")
plt.title("Box Plot of Sepal Length by Species")
plt.show()

 

 


👏觉得文章对自己有用的宝子可以收藏文章并给小编点个赞!

👏想了解更多统计学、数据分析、数据开发、机器学习算法、深度学习等有关知识的宝子们,可以关注小编,希望以后我们一起成长!

相关文章:

Seaborn知识总结

1、简介 (1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码; …...

flowable中用户相关api

springboot引入flowable&#xff1a;高版本mysql报错 <!-- https://mvnrepository.com/artifact/org.flowable/flowable-spring-boot-starter --><dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</art…...

java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类

&#xff08;以下内容全部来自上述课程&#xff09; 1.抽象类 父类定义抽象方法后&#xff0c;子类的方法就必须重写&#xff0c;抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为&#xff08;方法&#xff09;抽取到父类之后。由于每一个子类执行的内容是不一样…...

安装 Open WebUI

2025.03.01 早上 我已经安装了ollama 和deeseek模型 &#xff08;本地部署流水账之ollama安装Deepseek安装-CSDN博客&#xff09;&#xff0c;然后需要个与模型沟通的工具&#xff08;这么说不知道对不对&#xff09;。 刚开始用的chatbox&#xff0c;安装很方便&#xff0c;…...

Llama 2中的Margin Loss:为何更高的Margin导致更大的Loss和梯度?

Llama 2中的Margin Loss&#xff1a;为何更高的Margin导致更大的Loss和梯度&#xff1f; 在《Llama 2: Open Foundation and Fine-Tuned Chat Models》论文中&#xff0c;作者在强化学习与人类反馈&#xff08;RLHF&#xff09;的Reward Model训练中引入了Margin Loss的概念&a…...

【后端】Docker一本通

长期更新补充&#xff0c;建议关注收藏点赞 目录 Docker概述安装部署Docker基本操作使用docker部署tomcat使用docker部署mysql Docker概述 docker是⼀个应⽤级隔离的虚拟化技术docker三大核心概念 镜像&#xff1a;是具有源的所有特征的⼀个标记⽂件 仓库&#xff1a;存放镜像…...

工程化与框架系列(13)--虚拟DOM实现

虚拟DOM实现 &#x1f333; 虚拟DOM&#xff08;Virtual DOM&#xff09;是现代前端框架的核心技术之一&#xff0c;它通过在内存中维护UI的虚拟表示来提高渲染性能。本文将深入探讨虚拟DOM的实现原理和关键技术。 虚拟DOM概述 &#x1f31f; &#x1f4a1; 小知识&#xff1…...

数据结构之各类排序算法代码及其详解

1. 排序的概念 排序是一种常见的算法概念&#xff0c;用于将一组数据按照特定的顺序进行排列。排序算法的目的是将一组数据按照递增或递减的顺序重新排列。常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。排序算法的选择通常取决于数据规模、数据分布…...

【洛谷贪心算法】P1090合并果子

为了使消耗的体力最小&#xff0c;每次都应该选择当前重量最小的两堆果子进行合并。可以使用优先队列&#xff08;小根堆&#xff09;来实现这个过程&#xff0c;优先队列可以自动维护元素的顺序&#xff0c;每次取出堆顶的两个元素&#xff08;即最小的两个元素&#xff09;进…...

【告别双日期面板!一招实现el-date-picker智能联动日期选择】

告别双日期面板&#xff01;一招实现el-date-picker智能联动日期选择 1.需求背景2.DateTimePicker 现状图3.日期选择器实现代码4.日期选择器实现效果图5.日期时间选择器实现代码6.日期时间选择器实现效果图 1.需求背景 在用户使用时间查询时&#xff0c;我们经常需要按月份筛选…...

现今大语言模型性能(准确率)比较

现今大语言模型性能(准确率)比较 表头信息:表的标题为“大语言模型性能比较结果”(英文:Table 1: Large Language Model Performance Comparison Results),表明该表是用于对比不同大语言模型的性能。列信息: 模型:列出参与比较的不同大语言模型名称,包括LLAMA3(70B)…...

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图(水文,勿三)

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。 这一节我们来学习指针的相关知识&#xff0c;学习内存和地址&#xff0c;指针变量和地址&#xff0c;包…...

在 UniApp 中实现中间凸起 TabBar 的完整指南

如何在 UniApp 中设置中间 TabBar 凸起效果 在移动应用开发中&#xff0c;TabBar 是常见的导航组件&#xff0c;而中间凸起的 TabBar 按钮则是一种流行的设计风格&#xff0c;常用于突出重要功能&#xff08;如发布、拍照等&#xff09;。UniApp 提供了 midButton 属性&#x…...

Redis大key

Redis大key基本概念&#xff0c;影响 Redis 大 key 指在 Redis 中存储了大量数据的键&#xff0c;它会对 Redis 的性能和内存管理产生影响。 大key的定义与value的大小和元素数量有关&#xff0c;但这个定义并不是绝对的&#xff0c;而是相对的&#xff0c;具体取决于系统的使用…...

WPF高级 | WPF 与数据库交互:连接、查询与数据更新

WPF高级 | WPF 与数据库交互&#xff1a;连接、查询与数据更新 前言一、数据库交互基础概念1.1 数据库简介1.2 数据访问技术 二、WPF 与数据库连接2.1 连接字符串2.2 建立连接 三、WPF 中的数据查询3.1 使用ADO.NET进行数据查询3.2 使用 Entity Framework 进行数据查询3.3 使用…...

CogBlobTool工具

CogBlobTool是一款专用于图像斑点检测于分析的 工具&#xff0c;通过灰度值阈值分割和特征过滤&#xff0c;帮助在复杂背景中提取目标区域&#xff0c;并计算几何属性。 效果图 注意&#xff1a;在这里只有一张图像可以不使用模板匹配工具 CogBlobTool工具的功能 斑点检测于…...

C# WinForm程序中如何调试dll接口

公司的SF系统是自主开发的。不同的机种会有不同数据记录保存的需求&#xff0c;尤其是客户SQE更是各种奇思妙想......于是做了一个接口&#xff0c;实践之下效果还不错呢。 每每总是忘记怎么调试接口&#xff0c;特记录下备查。首先要将&#xff0c; 1 DLL项目与WinForms项目…...

自然语言处理:词频-逆文档频率

介绍 大家好&#xff0c;博主又来给大家分享知识了。本来博主计划完成稠密向量表示的内容分享后&#xff0c;就开启自然语言处理中文本表示的讲解。可在整理分享资料的时候&#xff0c;博主发现还有个知识点&#xff0c;必须得单独拎出来好好说道说道。 这就是TF-IDF&#xf…...

【银河麒麟高级服务器操作系统】服务器测试业务耗时问题分析及处理全流程分享

更多银河麒麟操作系统产品及技术讨论&#xff0c;欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品&#xff0c;请点击访问 麒麟软件产品专区&#xff1a;https://product.kylinos.cn 开发者专区&#xff1a;https://developer…...

基于大数据的民宿旅馆消费数据分析系统

【大数据】基于大数据的民宿旅馆消费数据分析系统&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统可以揭示民宿市场的消费模式和价格分布情况&#xff0c;帮助理解消费者偏好、价格走势及…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...