Seaborn知识总结
1、简介
(1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码;
(2)置数据集:Seaborn 包含了一些内置的示例数据集,这些数据集可以用于练习和演示。这些数据集通常与示例图表一起使用,以帮助用户更好地理解如何使用 Seaborn 创建可视化。
(3)统计图表:Seaborn 支持许多常用的统计图表类型,如散点图、折线图、条形图、箱线图、热图、小提琴图、分类散点图、成对关系图等。这些图表可以用于分析数据的分布、趋势、关系等方面。
(4)配色方案:Seaborn 提供了一组美观的默认配色方案,使图表更具吸引力。此外,还可以轻松自定义配色方案,以满足特定需求。
(5)高级统计功能:Seaborn 提供了用于绘制统计摘要信息的函数,例如回归线、置信区间、误差棒图等。这些功能有助于更深入地理解数据。
(6)对 Pandas 数据框的支持:Seaborn 可以与 Pandas 数据框无缝集成,使数据的导入、转换和可视化变得更加方便。
(7)主题和风格:Seaborn 允许用户选择不同的图表主题和样式,以满足不同的审美和出版需求。
2、catplot
(1)使用sns.catplot
函数,并将kind
参数设置为"bar"。
(2)创建的 catplot 图,x轴表示不同的物种(species),y轴表示花瓣长度(petal_length),并绘制了各个物种的平均花瓣长度的barplots。
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建catplot并绘制barplots
sns.catplot(x="species", y="petal_length", data=iris, kind="bar")
plt.xlabel("Species")
plt.ylabel("Petal Length")
plt.title("Barplots of Petal Length by Species")
plt.show()
3、violinplot
(1)使用sns.violinplot
函数
(2)其中x轴表示不同的物种(species),y轴表示萼片长度(sepal_length)
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建violinplot
sns.violinplot(x="species", y="sepal_length", data=iris)
plt.title("Violin Plot of Sepal Length by Species")
plt.xlabel("Species")
plt.ylabel("Sepal Length")
plt.show()
4、histplot
(1)使用sns.histplot
函数
(2)其中 x 轴表示萼片长度(sepal_length),y 轴表示频率(出现次数)
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建histplot
sns.histplot(data=iris, x="sepal_length", hue="species", bins=10, kde=True)
plt.title("Histogram of Sepal Length by Species")
plt.xlabel("Sepal Length")
plt.ylabel("Frequency")
plt.legend(title="Species")
plt.show()
5、jointplot
(1)使用sns.jointplot
函数
(2) x 轴表示萼片长度(sepal_length),y 轴表示萼片宽度(sepal_width)
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建jointplot
sns.jointplot(data=iris, x="sepal_length", y="sepal_width", kind="scatter")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.show()
6、heatmap
(1)使用sns.heatmap
函数
(2)首先,使用corr()
函数计算了Iris数据集中数值特征之间的相关性矩阵。然后,使用sns.heatmap
来绘制相关性热图,其中annot=True
表示在热图中显示数值标签,cmap
参数用于指定颜色地图,linewidths
参数用于指定单元格之间的边框宽度
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 计算相关性矩阵
correlation_matrix = iris.corr()# 创建热图
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", linewidths=0.5)
plt.title("Correlation Heatmap of Iris Dataset")
plt.show()
7、lineplot
(1)使用sns.lineplot
函数
(2) lineplot用于显示两个连续变量之间的趋势或关系。示例绘制了萼片长度(sepal_length)与萼片宽度(sepal_width)之间的线图,并使用hue
参数将数据按物种分组以在同一图中显示不同物种的趋势。
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建lineplot
sns.lineplot(data=iris, x="sepal_length", y="sepal_width", hue="species")
plt.xlabel("Sepal Length")
plt.ylabel("Sepal Width")
plt.title("Line Plot of Sepal Length vs. Sepal Width by Species")
plt.show()
8、boxplot
(1)使用sns.boxplot
函数
(2)boxplot通常用于可视化数据的分布和离群值。创建的 boxplot 图,x轴表示不同的物种(species),y轴表示萼片长度(sepal_length)。boxplot图展示了每个物种的萼片长度分布,包括中位数、四分位数和离群值。
import seaborn as sns
import matplotlib.pyplot as plt# 加载Iris数据集
iris = sns.load_dataset("iris")# 创建boxplot
sns.boxplot(x="species", y="sepal_length", data=iris)
plt.xlabel("Species")
plt.ylabel("Sepal Length")
plt.title("Box Plot of Sepal Length by Species")
plt.show()
👏觉得文章对自己有用的宝子可以收藏文章并给小编点个赞!
👏想了解更多统计学、数据分析、数据开发、机器学习算法、深度学习等有关知识的宝子们,可以关注小编,希望以后我们一起成长!
相关文章:
Seaborn知识总结
1、简介 (1)高级接口:Seaborn 提供了一组高级函数和方法,可以使得创建常见的统计图表变得简单,例如散点图、线性回归图、箱线图、直方图、核密度估计图、热图等等。无需像 Matplotlib 一样写大量的代码; …...
flowable中用户相关api
springboot引入flowable:高版本mysql报错 <!-- https://mvnrepository.com/artifact/org.flowable/flowable-spring-boot-starter --><dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</art…...

java后端开发day23--面向对象进阶(四)--抽象类、接口、内部类
(以下内容全部来自上述课程) 1.抽象类 父类定义抽象方法后,子类的方法就必须重写,抽象方法在的类就是抽象类。 1.定义 抽象方法 将共性的行为(方法)抽取到父类之后。由于每一个子类执行的内容是不一样…...

安装 Open WebUI
2025.03.01 早上 我已经安装了ollama 和deeseek模型 (本地部署流水账之ollama安装Deepseek安装-CSDN博客),然后需要个与模型沟通的工具(这么说不知道对不对)。 刚开始用的chatbox,安装很方便,…...
Llama 2中的Margin Loss:为何更高的Margin导致更大的Loss和梯度?
Llama 2中的Margin Loss:为何更高的Margin导致更大的Loss和梯度? 在《Llama 2: Open Foundation and Fine-Tuned Chat Models》论文中,作者在强化学习与人类反馈(RLHF)的Reward Model训练中引入了Margin Loss的概念&a…...

【后端】Docker一本通
长期更新补充,建议关注收藏点赞 目录 Docker概述安装部署Docker基本操作使用docker部署tomcat使用docker部署mysql Docker概述 docker是⼀个应⽤级隔离的虚拟化技术docker三大核心概念 镜像:是具有源的所有特征的⼀个标记⽂件 仓库:存放镜像…...
工程化与框架系列(13)--虚拟DOM实现
虚拟DOM实现 🌳 虚拟DOM(Virtual DOM)是现代前端框架的核心技术之一,它通过在内存中维护UI的虚拟表示来提高渲染性能。本文将深入探讨虚拟DOM的实现原理和关键技术。 虚拟DOM概述 🌟 💡 小知识࿱…...

数据结构之各类排序算法代码及其详解
1. 排序的概念 排序是一种常见的算法概念,用于将一组数据按照特定的顺序进行排列。排序算法的目的是将一组数据按照递增或递减的顺序重新排列。常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。排序算法的选择通常取决于数据规模、数据分布…...

【洛谷贪心算法】P1090合并果子
为了使消耗的体力最小,每次都应该选择当前重量最小的两堆果子进行合并。可以使用优先队列(小根堆)来实现这个过程,优先队列可以自动维护元素的顺序,每次取出堆顶的两个元素(即最小的两个元素)进…...

【告别双日期面板!一招实现el-date-picker智能联动日期选择】
告别双日期面板!一招实现el-date-picker智能联动日期选择 1.需求背景2.DateTimePicker 现状图3.日期选择器实现代码4.日期选择器实现效果图5.日期时间选择器实现代码6.日期时间选择器实现效果图 1.需求背景 在用户使用时间查询时,我们经常需要按月份筛选…...

现今大语言模型性能(准确率)比较
现今大语言模型性能(准确率)比较 表头信息:表的标题为“大语言模型性能比较结果”(英文:Table 1: Large Language Model Performance Comparison Results),表明该表是用于对比不同大语言模型的性能。列信息: 模型:列出参与比较的不同大语言模型名称,包括LLAMA3(70B)…...

程序诗篇里的灵动笔触:指针绘就数据的梦幻蓝图(水文,勿三)
大家好啊,我是小象٩(๑ω๑)۶ 我的博客:Xiao Xiangζั͡ޓއއ 很高兴见到大家,希望能够和大家一起交流学习,共同进步。 这一节我们来学习指针的相关知识,学习内存和地址,指针变量和地址,包…...
在 UniApp 中实现中间凸起 TabBar 的完整指南
如何在 UniApp 中设置中间 TabBar 凸起效果 在移动应用开发中,TabBar 是常见的导航组件,而中间凸起的 TabBar 按钮则是一种流行的设计风格,常用于突出重要功能(如发布、拍照等)。UniApp 提供了 midButton 属性&#x…...
Redis大key
Redis大key基本概念,影响 Redis 大 key 指在 Redis 中存储了大量数据的键,它会对 Redis 的性能和内存管理产生影响。 大key的定义与value的大小和元素数量有关,但这个定义并不是绝对的,而是相对的,具体取决于系统的使用…...

WPF高级 | WPF 与数据库交互:连接、查询与数据更新
WPF高级 | WPF 与数据库交互:连接、查询与数据更新 前言一、数据库交互基础概念1.1 数据库简介1.2 数据访问技术 二、WPF 与数据库连接2.1 连接字符串2.2 建立连接 三、WPF 中的数据查询3.1 使用ADO.NET进行数据查询3.2 使用 Entity Framework 进行数据查询3.3 使用…...

CogBlobTool工具
CogBlobTool是一款专用于图像斑点检测于分析的 工具,通过灰度值阈值分割和特征过滤,帮助在复杂背景中提取目标区域,并计算几何属性。 效果图 注意:在这里只有一张图像可以不使用模板匹配工具 CogBlobTool工具的功能 斑点检测于…...

C# WinForm程序中如何调试dll接口
公司的SF系统是自主开发的。不同的机种会有不同数据记录保存的需求,尤其是客户SQE更是各种奇思妙想......于是做了一个接口,实践之下效果还不错呢。 每每总是忘记怎么调试接口,特记录下备查。首先要将, 1 DLL项目与WinForms项目…...
自然语言处理:词频-逆文档频率
介绍 大家好,博主又来给大家分享知识了。本来博主计划完成稠密向量表示的内容分享后,就开启自然语言处理中文本表示的讲解。可在整理分享资料的时候,博主发现还有个知识点,必须得单独拎出来好好说道说道。 这就是TF-IDF…...

【银河麒麟高级服务器操作系统】服务器测试业务耗时问题分析及处理全流程分享
更多银河麒麟操作系统产品及技术讨论,欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品,请点击访问 麒麟软件产品专区:https://product.kylinos.cn 开发者专区:https://developer…...

基于大数据的民宿旅馆消费数据分析系统
【大数据】基于大数据的民宿旅馆消费数据分析系统(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统可以揭示民宿市场的消费模式和价格分布情况,帮助理解消费者偏好、价格走势及…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...

STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...