机器学习决策树
一、香农公式
熵:

信息增益:
信息增益=信息熵-条件熵
![]()
前者是初始信息熵大小,后者是因为条件加入后带来的确定性增加
信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度
信息增益越大说明影响越大
二、代码
"""
决策树对泰坦尼克号进行预测生死
:return: None
"""
# 获取数据
titan = pd.read_csv("./data/titanic.txt")
titan.info() # info()查看数据信息,包括每列的类型,非空值个数,内存占用等
# 处理数据,找出特征值和目标值
x = titan[['pclass', 'age', 'sex']]y = titan['survived']
print(x.info()) # 用来判断是否有空值
x.describe(include='all') # 用来查看数据的描述性统计信息
# 一定要进行缺失值处理,填为均值
mean=x['age'].mean()
print(mean)
x.loc[:,'age']=x.loc[:,'age'].fillna(mean)
# 分割数据集到训练集合测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=4)
print(x_train.head())
x_train.to_dict(orient="records") #把df变为列表套字典,后面方便变成one_hot编码
# 进行处理(特征工程)特征-》类别-》one_hot编码
dict = DictVectorizer(sparse=False) # sparse=False表示不用稀疏矩阵,用numpy数组# 这一步是对字典进行特征抽取,to_dict可以把df变为字典,records代表列名变为键
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
print(type(x_train))
print(dict.get_feature_names_out())
print('-' * 50)
x_test = dict.transform(x_test.to_dict(orient="records"))
print(x_train)
# 用决策树进行预测,修改max_depth试试,修改criterion为entropy
#树过于复杂,就会产生过拟合
dec = DecisionTreeClassifier()#训练
dec.fit(x_train, y_train)# 预测准确率
print("预测的准确率:", dec.score(x_test, y_test))# 导出决策树的结构
export_graphviz(dec, out_file="tree.dot",feature_names=['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'female', 'male'])

相关文章:
机器学习决策树
一、香农公式 熵: 信息增益: 信息增益信息熵-条件熵 前者是初始信息熵大小,后者是因为条件加入后带来的确定性增加 信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度 信息增益越大说明影响越大 二、代码 ""&…...
Spring Boot + MyBatis 实现 RESTful API 的完整流程
后端开发:Spring Boot 快速开发实战 引言 在现代后端开发中,Spring Boot 因其轻量级、快速开发的特性而备受开发者青睐。本文将带你从零开始,使用 Spring Boot MyBatis 实现一个完整的 RESTful API,并深入探讨如何优雅地处理异…...
通过 ANSYS Discovery 进行 CFD 分析,增强工程设计
概括 工程师使用计算流体动力学 (CFD) 分析来研究和优化各种应用中的流体流动和传热分析。ANSYS Discovery 是一个用户友好的软件平台,使工程师能够轻松设置和解决 CFD 模型,并能够通知设计修改 在这篇博文中,我们将重点介绍在 Ansys Disc…...
家用可燃气体探测器——家庭燃气安全的坚实防线
随着社会的发展和变迁,天然气为我们的生活带来了诸多便利,无论是烹饪美食,还是温暖取暖,都离不开它的支持。然而,燃气安全隐患如影随形,一旦发生泄漏,可能引发爆炸、火灾等严重事故,…...
ListControl双击实现可编辑
为Edit Control控件添加丢失输入焦点事件,可见设为false 为List Control控件添加双击事件 控件和成员变量之间交换数据 CListCtrl ListPrint1; //列表输出 CEdit...
ave-form.vue 组件中 如何将产品名称发送给后端 ?
如何将产品名称发送给后端。 在这段代码中,产品名称(productName)的处理和发送主要发生在 save() 方法中。让我逐步分析: 产品ID的选择: <w-form-selectv-model"form.productId"label"涉及产品&q…...
DeepSeek行业应用实践报告-智灵动力【112页PPT全】
DeepSeek(深度搜索)近期引发广泛关注并成为众多企业/开发者争相接入的现象,主要源于其在技术突破、市场需求适配性及生态建设等方面的综合优势。以下是关键原因分析: 一、技术核心优势 开源与低成本 DeepSeek基于开源架构…...
【Markdown 语法简洁讲解】
Markdown 语法简洁语法讲解 什么是 Markdown1. 标题2. 列表3.文本样式4. 链接与图片5. 代码6. 表格7. 分割线8. 流程图9. 数学公式10. 快捷键11. 字体、字号与颜色 什么是 Markdown Markdown 是一种轻量级标记语言,通过简单的符号实现排版格式化,专注于…...
250301-OpenWebUI配置DeepSeek-火山方舟+硅基流动+联网搜索+推理显示
A. 最终效果 B. 火山方舟配置(一定要点击添加) C. 硅基流动配置(最好要点击添加,否则会自动弹出所有模型) D. 联网搜索配置 E. 推理过程显示 默认是没有下面的推理过程的显示的 设置步骤: 在Functions函…...
【3天快速入门WPF】12-MVVM
目录 1. 什么是MVVM2. 实现简单MVVM2.1. Part 12.2. Part 21. 什么是MVVM MVVM 是 Model-View-ViewModel 的缩写,是一种用于构建用户界面的设计模式,是一种简化用户界面的事件驱动编程方式。 MVVM 的目标是实现用户界面和业务逻辑之间的彻底分离,以便更好地管理和维护应用…...
查找Excel包含关键字的行(の几种简单快速方法)
需求:数据在后缀为xlsx的Excel的sheet1中且量比较大,比如几十万行几百列;想查找一个关键字所在的行,比如"全网首发"; 情况①知道关键字在哪一列 情况②不确定在哪一列,很多列相似又不同,本文演…...
性能测试分析和调优
步骤 性能调优的步骤 性能调优的步骤: 1.确定问题:根据性能测试的结果来分析确定bug。–测试人员职责 2.分析原因:分析问题产生的原因。----开发人员职责 3.给出解决方案:可以是修改软件配置、增加硬件资源配置、修改代码等----…...
(视频教程)Compass代谢分析详细流程及python版-R语言版下游分析和可视化
不想做太多的前情解说了,有点累了,做了很久的内容,包括整个分析,从软件安装和报错解决到后期下游python版-R语言版下游分析和可视化!单细胞代谢分析我们写过很多了,唯独少了最“高级”的compass,…...
【SQL】MySQL中的字符串处理函数:concat 函数拼接字符串,COALESCE函数处理NULL字符串
MySQL中的字符串处理函数:concat 函数 一、concat ()函数 1.1、基本语法1.2、示例1.3、特殊用途 二、COALESCE()函数 2.1、基本语法2.2、示例2.3、用途 三、进阶练习 3.1 条件和 SQL 语句3.2、解释 一、concat &…...
c++中深拷贝和浅拷贝的联系和区别
在 C 编程里,深拷贝和浅拷贝是两种不同的对象复制方式,它们在实现方式、资源管理和适用场景等方面存在显著差异。下面为你详细介绍它们的区别。 1. 基本概念 浅拷贝:浅拷贝仅仅复制对象的成员变量值。对于基本数据类型(如 int、d…...
Autotestplat 在多个平台和公司推荐使用!
1、 51Testing软件测试网 开源好用!推荐一款更轻量化的自动化测试平台! 2、程序员杨叔 从繁琐到简单!Autotestplat自动化测试平台搭建使用 3、一飞开源 [开源]一站式自动化测试平台及解决方案,支持接口、性能、UI测试 4、github h…...
字符串最后一个单词的长度
一:题目 二:思路 用rfind()函数倒着找第一个空格,返回的值为pos,然后打印size()-(pos1),posnpos就代表只有一个单词,则直接返回size #include <iostream> using namespace std; int main() {strin…...
【Linux】learning notes(3)make、copy、move、remove
文章目录 1、mkdir (make directory)2、rmdir (remove directory)3、rm(remove)4、>5、touch 新建文件6、mv(move)7、cp(copy) 1、mkdir (make…...
一、图像图像的基本概念
文章目录 一、分辨率概念二、图形图像的区别三、位图和矢量图的区别 一、分辨率概念 图形显示计数中的分辨率概念有三种,即屏幕分辨率、显示分辨率和显卡分辨率。它们既有区别又有着密切的联系,对图形显示的处理有极大的影响。 1.屏幕分辨率 显示器分辨…...
两道算法练习
力扣322零钱兑换 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。 你可以认为每种硬币的…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
